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(III) Introduction

Grant No. AFOSR-76-3024 was initiated on March 15, 1976.

The overall goal of research sponsored under this Grant can be

summarized in two different objectives:

(1) To demonstrate the feasibility of optical com-

putations for the implementation of image band-

width compression;

(2) Upon demonstration of feasibility, to carry-out

the research necessary to advance optical com-

putations for image bandwidth compression to

approximately the same state of sophistication

as currently associated with digital computa-

tions for image bandwidth compression.

Achieving these two objectives required the undertaking of

several specific steps in the course of the research sponsored

under the Grant. The steps were:

(1) Survey optical computation systems and schemes

to establish the repertoire of functions which

could be carried out optically, e.g., convolu-

tions (both coherent and incoherent), sampling,

differentiation, integration, etc.;

(2) Establish what computational processes or func-

tions were useful in the development of band-

width compression schemes;
(3) Determine architectural configurations for image

bandwidth compression, that is, try to find

*-- - " . ' -. ; . *,, i ~ , -:, ' i
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arrangements of optical processor components to

achieve compression calculations;

(4) Demonstrate, by means of simulations, that a

proposed optical processor architecture would

achieve some level of bandwidth compression;

(5) Seek improved architectures or new processor

functions to increase the compression perform-

ance of candidate systems.

These five steps were repeated continually for a variety of pro-

posed optical schemes for image bandwidth compression algorithms.

In this report, the final technical report for Grant AFOSR-76-3024,

we present the results of the efforts which were sponsored by the

Grant.

It is important to note that step (4) in the above list is

an important facet of our research, and is something which dis-

tinguishes our research from other research in both optical proc-

essing and image bandwidth compression. Every candidate archi-

tecture for bandwidth compression by optical processor was simu-

lated by using a multi-purpose, high-performance digital image

processing facility at the University of Arizona. (See Appendix A.)

It is important to understand the motivation for using digital

image processing in the development of optical processing schemes.

Optical processing research and development can be divided

into two broad categories: the development of physical materials,

devices, or systems which realize specific mathematical functions

or computational processes; and the development of systems archi-

tectures which treat the individual mathematical functions or

'[1
I.
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computational processes as components, and then assemble the com-

ponents into a high-level system which achieves some complex

processing objective.

Much of the research in optical processing falls into the

first of these two categories: development of materials, devices,

or systems which realize specific mathematical functions or proc-

esses. The concentration of effort in this area is quite impor-

tant, for many of the great advantages of optical processing will

not be realized without, for example, better materials to serve

as spatial light modulators, or higher bandwidth in the schemes

by which a modulator is accessed and addressed. The research in

this area requires painstaking and careful control of experimental

facilities.

In the research sponsored under Grant AFOSR-76-3024, we have

concentrated in the second category: the development of systems

architures. Because the devices and materials for optical proc-

essing are undergoing continual ferment, any attempt to physically

realize an optical processor for bandwidth compression could be

dependent upon the component devices chosen, e.g., modulator. In

our research the use of digital image processing to simulate

optical processor bandwidth compression systems is a direct con-

sequence of our intent to concentrate upon systems-level concepts

and avoid the turmoil of specific material or device implementa-

tion technologies. Digital image processing concentrates upon1

functional capabilities and their implementation, and is much more
4

flexible. It is important to realize, however, that the use of

digital image processing has been tied to optical realizability;

-t-;"*--
--- V,
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that is, no digital image processing functions were used in a

simulation unless they could be realistically implemented in some

properly configured optical device.

It is worthwhile noting that our course of investigation has

gone from systems using all optical componentry to systems using

a mix of optical and digital componentry. This is parallel to

the path followed by other workers in optical processing. As the

price, performance, and ease of interfacing of digital components

and sensors has improved, more advantages to including digital

components in optical systems have emerged. Hybrid optical/digital

systems are being considered as the most effective solution to a

number of signal-processing problems, and our work under Grant No.

AFOSR-76-3024 is no different. The more complex systems for image

gandwidth compression which have been studied in the latter phases

of Grant AFOSR-76-3024 have explicitly involved the employment of

digital componentry functions.

l"I
1I
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(IV) Summary of Important Results

We will summarize our important results first in terms of

the general objectives set forth in the beginning of Section III,

the Introduction:

(1) We have demonstrated the feasibility of a number

of optical processing system architectures which

can be employed for image bandwidth compression;

(2) Our results appear to justify the assertion that

optical processing for image bandwidth compres-

sion can achieve the same sophistication as di-

gital processing for image bandwidth compression.

We will summarize the specific systems which lead us to the

results stated under item (1) directly above. First, we consider

the result asserted in item (2), since this is a proper entry to

describe the current state of digital processing for image band-

width compression, and to describe the relationship of our re-

search to it.

Image bandwidth compression schemes can be classified in two

different ways. One major level of classification is in the do-

main where the compression scheme operates. There are two major

divisions to this classification: space domain compression, where

computations take place in the original image space of the input

data; and transform domain compression, where computations are

used to generate a transform of the original image, and subsequent

compression computations take place in this transform domain, e.g.,

the Fourier domain. For either spatial or transform, the purpose

of the compression computations is to remove the redundancy which

. '.
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exists in the imagery, thereby producing an image which is "de-

correlated" in some sense.

It is the dimension wherein the decorrelation takes place

that defines the other major level of classification for band-

width compression schemes. That is, the characteristics of the

imagery are used to determine what decorrelation computations are

carried out. For monochrome, single-frame imagery only spatial

redundancy can be eliminated. For polychrome, single-frame images

redundancy in both spatial and wavelength (or spectral) content

can be eliminated. For multi-frame imagery, with each frame se-

quenced in time, any temporal redundancy can be eliminated. Com-

binations of any one or two of the redundancy measures of spatial,

spectral, or temporal redundancy lead to different data compres-

sion schemes.

Digital image bandwidth compression schemes have been demon-

strated for virtually all combinations of spatial or transform do-

main processing with spatial, spectral, and temporal redundancy re-

duction. It is this wealth of results which is the mainstay of lit-

erature in the compression of image bandwidth by digital computations.

A final sophistication in digital image bandwidth compression

techniques is whether a given technique is adaptive or nonadaptive.

A nonadaptive compression scheme processes all portions of an image

in the same way, i.e., the operating parameters of the compression

algorithm are the same for all components of the image. Conversely,

an adaptive scheme recognizes that the level of redundancy of an

image is not constant in space, spectral content, or time; for most

*See, for examples, the bandwidth compression chapters of Pratt,
Digital Image Processing, Wiley, New York, 1976.

. _U" ' - ,.. . -, -i , i
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efficient operation, therefore, some of the critical operating

parameters of the bandwidth compression algorithm are adjusted as

a function of the behavior of the imagery.

Thus, digital image bandwidth compression processes can be

characterized as: spatial domain vs. transform domain; spatial

redundancy reduction vs. spectral redundancy reduction vs. tem-

poral redundancy reduction; adaptive processing vs. nonadaptive

processing. The overall complexity is graphically displayed in

Figure 1. To add further to the complexity of digital image band-

width compression schemes, recall that any of the schemes within

a box in Figure 1 can be combined with others. Thus, a scheme

could be developed, for example, by combining together nonadaptive

spatial redundancy reduction processing in the spatial domain,

with adaptive transform domain processing of the color or spectral

components, and nonadaptive spatial domain processing to reduce

temporal redundancy.

The point of Figure 1 is that it frames the challenge which

is confronted in the second research objective in the introduction

to Section III, i.e., to make the level of optical processing for

image bandwidth compression equal to that of digital processing

for image bandwidth compression.

-' The research conducted under Grant AFOSR-76-3024 has concen-

trated only upon the left-half of Figure 1, spatial domain proc-

essing. This is not because optics are not suited to transform

domain processing. On the contrary, the Fourier transform capa-

bilities of coherent optical systems are well suited to the com-

putations for data compression which have been proven in the
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context of digital compression research. In fact, digital com-

pression research using the transform domain is so extensive that

it would be direct to develop a coherent system for carrying out

the transform domain compression process. Such a system would

have one severe problem: the requirement to employ coherent

(holographic) detection in the Fourier plane in order to obtain

both magnitude and phase components for the compression coding

step. However, it could be done. Since this did not represent

a challenge in the context of new and/or unique system-level ar-

chitectures for optical processing in image bandwidth compression,

such research was not undertaken. It is in the spatial domain

processing, for spatial, spectral, and temporal redundancy, where

our research was concentrated.

In the following we summarize the different optical proces-

sing schemes which were investigated during the course of research

sponsored under Grant No. AFOSR-76-3024. The details of the

actual processing schemes and the simulations are contained in the

series of appendices affixed to this report. The appendix which

documents a scheme summarized below should be consulted for spe-

c if ics .

(IV.l) Interpolated DPCM

The simplest digital data compression scheme for single-frame

monochrome imagery is Differential Pulse Code Modulation (OPCM).

The first research undertaken for the purposes of Grant AFOSR-76-

-~ 3024 was to construct a compression system which was the optical

* analogy of digital DPCM. In the process new insight was gained

into digital DPCM as well.
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The basis of digital DPCM is prediction. As the imagery is

scanned (left-to-right, top-to-bottom), the pixels in a given

causal neighborhood (called the prediction neighborhoood) are

combined to form an estimate of the pixel which is next to be

encountered in the scan. The difference between the estimate

and the actual pixel value is then quantized and coded. DPCM

works because, except in the neighborhood of abrupt slopes, an

estimate will be accurate. Hence, the differential will be small

and can be coded with a small number of bits.

The development of an optical analogy required releasing the

causality constraint associated with an imagery scan, since opti-

cal systems are noncausal. In doing this, we replaced the pixel

estimate with a neighborhood smoothing, and computation of a dif-

ferential between the smoothed and actual pixel values. The

differential proved to be small and was coded as in standard DPCM.

Optical system configurations which would realize this new scheme,

called interpolated DPCM, were configured on the basis of inco-

herent processors and video electronics.

Appendix B is a paper which described the IDPCM process in

some detail.

(IV.2) Incoherent Feedback Video Processor

The noncausal optical system for IDPCM was then examined from

the viewpoint of a generalization. It can be shown* that DPCM can

be formulated as a temporal feedback scheme. A generalization of

this scheme to imagery would require noncausal convolutions and

*See, for example, the book by Pratt, Digital Image Processing,
Wiley, New York, 1978.

I'. ' l | ' '
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image-plane to image-plane feedback. An architecture to do this

can be postulated as in Figure 2, where we show the general struc-

ture of causal DPCM and an architecture for noncausal image-plane

to image-plane differences in an analogous fashion.

In theory the process in the lower half of Figure 2 can be

realized with coherent processing, with beam splitters and phase

adjustments serving as sums and differences; the quantization

process could be realized by any of the nonlinear methods studied

by Sawchuk*. However, the practical implementation of this proc-

ess represents great difficulty, chiefly due to phase coherence.

In even a miniaturized version of the scheme with integrated

optics, the distance around the feedback paths will be very great

compared with the wavelengths of light. The phase of signals at

the difference and sum planes cannot be controlled, as a result,

without resorting to interferometric precision.

Despite the difficulty of the feedback architecture, it was

promising to investigate whether the phase problems could be

solved. One direct choice is to employ video systems. By imag-

ing onto video sensors and using the video signals for image-

plane to image-plane operations the phase problem related to dis-

tance around the loop is solved, since video systems can operate

at wavelengths which are long compared to the feedback path. A

new problem is introduced, however, by the temporal scanning in

a video system. Phase stability in spatial distance around the
4

loop is exchanged for temporal stability caused by the time delay

to scan one frame.

*Sawchuk and Dashiell, SPIE Proceedings on Image Processinq, Vol.
74, p. 93, 1976.

1
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We chose to investigate the problems of a sampled-data imple-

mentation of an incoherent optical video feedback processor. We

also chose to simulate the operation of such a system. Our analy-

sis is given in Appendix C. Our simulations showed the concept

was feasible, but fraught with sufficient difficulties to make it

unattractive. This line of research was discontinued.

(IV.3) Optical Image Bandwidth Compression in the Eye

The work which we conducted in the development and evaluation

of IDPCM was further extended to an interesting insight into the

human visual system. Ba:ed on a number of facts about the physi-

ology of the human visual system, it is possible to recognize that

the structure of the IDPCM bandwidth compression processor is quite

similar to equivalent structure in the eye. Furthermore, both

processes are suited for operation in incoherent light, which is

an advantage for IDPCM and an absolute necessity for the human eye.

Once this analogy was recognized, research was undertaken to

examine the extent to which the processing of information by the

human visual system could be interpreted in a bandwidth compression

4, context. Our results in this research are summarized in Appendix D,

a paper discussing a two-channel model of human vision and its di-

rect relationship to the IDPCM compression technique presented in

Appendix B.

(IV.4) Spline Interpolation for Image Bandwidth Compression

With the success of the IDPCM scheme, which is nonadaptive

and operates with incoherent light, the next step in complexity
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was to introduce some degree of adaptive processing into the

optical processors for bandwidth compression. Our research in

this area was motivated by recent work in the adaptive compres-

sion of imagery by B-spline functions. The B-spline functions

have a local property and can be constructed from repeated con-

volutions (which an optical processor can implement directly).

Likewise, an analysis of the B-spline approximation problem shows

that least-squares fitting of data can be derived by simple inte-

gration and differentiation processes, which an optical processor

can also implement. Since any of these processes require coherent

operation, however, the resulting processor must operate in coher-

ent light and an incoherent-to-coherent conversion device (such

as Hughes liquid crystal) becomes necessary.

Appendix E contains the detailed theory of an optical proc-

essor scheme which can adapt its compression behavior to the spe-

cific properties of the image in a localized region. It is a

complicated processor, unfortunately. Although our simulations

indicate that such a processor would have high performance in

image bandwidth compression, we believe a viable adaptive proc-

Sessor must be more simple. This line of research was discontin-

ued, as a result.

(IV.5) Adaptive Bandwidth Compression Scheme

Since the spline processor achieved adaptive compression be-

havior only at the expense of great complexity, a search for a

much simpler scheme was undertaken. This led to the development

of a scheme which utilized known behavior of the visual system:

~I.
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sensitivity to edges. Many judgements about image quality, and

many tasks in extraction of image information, are highly depen-

dent upon the edge content of the image. An image can be rendered

poor in contrast or resolution, but preservation of edges will

still make the imagery suitable for many human purposes.

The adaptive scheme was developed on a requirement to pre-

serve edges. A simple edge filter (which can be implemented op-

tically) is created by convolution. The existence of an edge in

the image is assumed if the edge strength exceeds a certain thresh-

old. The position of the edges are coded by a run-length code,

along with the edge values. A low-pass filtered version of the

image (which can also be implemented optically) is transmitted

with little bandwidth requirement. The edges are inserted into

the low-pass version, and the result is an image with soft-shapes

that possess sharp edges. The reconstructed images possess nearly

all the information used in typical information extraction tasks-

e.g., identification of objects.

Appendix F is a paper which describes the adaptive scheme

resulting from this edge detection process.

(IV.6) Interframe Bandwidth Compression

Interframe imagery, i.e., imagery from a temporal, sequential

* - image source such as television, represents a new level of com-

z plexity in the use of optical processors for image bandwidth comn-

pression. The problem is that temporal redundancy cannot be

eliminated without storage of one or more frames prior to the

current frame. It is only possible to identify temporal redundancy
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in the context of the change from frame-to-frame. fortunately,

frame storage is difficult in an optical processor sybtem. Al-

though electro-optical devices exist which can store a frame,

they are of inferior quality when compared to some of the digital

devices which have been recently developed, e.g., digital semi-

conductor frame buffer memories. Some new devices, such as CCD's,

offer analog sensing and digital addressing in simple, integrated

devices. Consequently, our research in interframe data compres-

sion has been on the basis of hybrid optical/digital operation.

The employment of digital frame buffers to serve as image storage

is the simplest way to allow for the temporal processing align-

ment.

Appendix G is a paper describing our system proposed for in-

terframe compression. Basically, it consists of an optical com-

pression component utilizing the IDPCM process discussed in Ap-

pendix B. Since multiple frame imagery is assumed, the output of

the IDPCM processor is captured in frame buffer units, and con-

ventional DPCM processing between frames is used to reduce the

redundancy between frames.

°

-4

* --. 1
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(V) Conclusions

We belive the papers and results set forth in detail in the

Appendices justify the conclusion that we have demonstrated the

feasibility of using optical processors for image bandwidth com-

pression. This was the first objective which we set forth in the

introduction, Section II. What of our second objective, to raise

the sophistication of optical processing methods to the level en-

joyed by digital bandwith compression? As can be seen from Fig-

ure 1 of Section IV, we need additional research to establish a

breadth of variety in optical computations for image bandwidth

compression, comparable to digital systems. In particular, band-

width compression for multi-spectral imagery, better interframe

compression performance, and adaptive compression are all goals

for our future research in this area.
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THE DIGITAL IMAGE ANALYSIS LABORATORY

The Digital Image Analysis Laboratory (DIAL) is located in the Engineer-
ing Building on the University of Arizona. campus. The DIAL facility is the
focus on the Arizona campus of research involvi'ng the processing, manipulation,
and analysis of imagery by digital computers. Basic research is also carried-
out in technologies that support digital image analysis, such as signal proc-
essing and numerical techniques.

Besides the use of DIAL facilities in programs of sponsored research,
DIAL figures prominently in the education of graduate students. DIAL facili-
ties are used for instruction in Remote Sensing, Optical Sciences, and Systems
Engineering. Students from-these Departments (as well as others) regularly
work in the DIAL facility.

DIAL Resources
The resources within DIAL consist of equipment, programs, and faculty of

the University of Arizona.
(1) Equipment

DIAL equipment resources consist of hardware physically located within
the laboratory, and of hardware outside of the laboratory that can be accessed
remotely. Equipment with DIAL consists of the following:

- PDP-11/70 Computer with 192K words of storage, cache memory,
floating point processor.

- RM0O3 Disc Storage Unit, with 67 Megabytes of memory.
- TU-10 Magnetic Tape Drive, 9 track 800 BPI.
- DZ-11 8-line Multiplexer, with 4 CRT terminals, one printing

* terminal, one remote dial-up phone line modem terminal.
- LP-11 Line Printer.
- Stanford Technology Corporation Image Display Unit: 512 x

512 pixels x 8 bits/pixel x 3 colors (Red, Green, Blue),
with Graphics, Feedback Arith./Logic Unit, Precision color
CRT display monitor, interactive trackball control.

Equipment accessed remotely from DIAL includes the following:
- DEC-lO/CDC Cyber 175 Computers in the University Computer

Center; access from DIAL is a permanent 1200 baud telephone
terminal modem set.

- VAX-11/780 Computer in the Department of Radiology; access is
a 19.2 k baud telephone modem set between the VAX and 11/70
CPU's.

(2) Software/Programs
DIAL software resources consist of special programs written by equipment

* manufacturers and programs created for more general-purpose image processing.
Software resources include:

[d~
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-SADIE, a general-purpose image processing software packageT
- written at the University of Arizona and distributed by the

University of Minnesota to a dozen different sites. SADIE
is available in both a CDC Cyber 175 version and a PDP-11/70
version;

-FACEL, a general purpose pattern recognition package;

-System 511, an interactive image processing package solely
for the Stanford Technology Corporation image display system.

(3) Faculty
Faculty working in DIAL, or associated with DIAL projects, cover a variety

of academic disciplines. Principals currently involved include:

B. R. Hunt, Professor of Systems Engineering and Professor
of Optical Sciences;

P. N. Slater, Professor of Optical Sciences and Chairman
of Remote Sensing Programs;

J. J. Burke, Professor of Optical Sciences;

R. Schowengerdt, Assistant Professor of Remote Sensing.

Some DIAL Activities
A variety of sponsored research projects are currently underway within

DIAL. Examples of the current projects are:
- Simulation of optical processing for image data compression;

- Investigation of factors influencing the automatic compilation
of maps from aerial photographs;

- Study Group to examine the feasibility of automating image
* . processing;

- Geometric correction, rectification, and editing of images of
4 the planet Saturn from the Pioneer spacecraft;

-Generation and display of imagery for ranking of image quality
.4 criteria;

Use of LANDSAT imagery for determination of agricultural plant-
ing patterns in Avra Valley, Arizona.

Further Inquiries
For further information, inquiries concerning research projects, sponsor-

ship, or use of DIAL facilities, please contact:
Professor B. R. Hunt
DIAL

4 Department of Systems Engineering
University of Arizona
Tucson, Arizona 85721
(602)626-5157
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Optical computing for image bandwidth compression:
analysis and simulation

I
B. R. Hunt

Image bandwidth compression s dominated by digital methods for carying out the required coinpststions.
Thi paper dise the gmneral problem of using optics to reem the computatiom a bandwit comp -
aion. A cmmon method of digital bandwidth compression., feedback difterantial pulse *ads modulatim
(DPCM). is rmviewed, ad the obstacles to making a direct optical analogy to fedback DPCM ar discused.
Instud of a direct optical analogy to DPCM, an optical system which cap oirs the essential lfstures ofDIPCM without optica feedback is introduced. The 1 tial features of tis incoheret opia systm ane
en odigflow-frequency infomation and genertion ofdifere m ples whih cm be cde d with asml
number of bits A smulation of this optical system by n of digital image processing psitedL
performance data ar also included.

L k Iroduction of digital image processing. The motivation for data
When digital image processing methods were initially compression is the great amount of information that can

employed ten to fifteen years ago, the rationale often exist in an image. Even a low-quality image, such as
voiced in making the decision to use digital compute- might be produced by a pocket camera, can contain
ton was the flexibility of the computer and the relative 1O-lO1 bits of information, and a high quality image
inflexibility of optics. Thus, it was often argued, the can contain several orders of magnitude more bits of
digita computer offered the means to explore and information The transmission and storage of such
simulate a variety of system configurations. Ones the masses of data are difficult, and anything which can be
final optimum configuration became known, this par- done to eliminate data redundancy is of interest, since
ticular one could be frozen and implemented in optics, there will be a concurrent reduction in the requirements
which have the virtues of parallel computations and of transmission bandwidth, storage, and system costs.
wide space-bandwidth product. This early rationale Given this motivation, image data compression has been
for digital image processing is heard with much less one of the most successful applications of dqtal imag
frequency nowadays. The revolution in semiconductor processing. As can be seen from existing survey papers
electronics has produced cheap, fast, and reliable digital on image data compression,1-3 a variety of different

. systems. New digital algorithms, such as the fast methods have been investigated and shown to be sec-
Fourier transform, have made digital image processing cesafuL The succes of digital computations can be men
an active and fruitful endeavor, which is carried on for in efforts currently underway to build and test proto-
its own purposes and without reference to flexibility in types of all-digital compression sstUM for military
simulating optics. In this recent burst of activity in applications."
digital image processing, a remembrance of the early As favorable as the performance characteristics of

" rationale brings to mind the question: are there optical current digital components are, the potential of optical
computations in image processing which are being computations should not be overlooked. TheM is still
overlooked in the successes of digital processing? merit in analog signal processing when the task is
" Image data ompression is an example of the success properly defined. In this paper we discuss the appli-
Iacation of optical methods to the problem of imag data

compremion. We will consider the computations em.
ployed in image data compresion from the viewpoint

The author is with University of Arizona, System & Industrial of how those computations may be realized by optical
Engineering Department and Optical Sciences Center, Tuem, Ari- processes. In addition, a structure suitable for optical
sona 86721. implementation of image data compression will be

Received 10 November 1977. presented. The results of -simulating this proposed
0003-W3/78/0916-2WW.0/o. optical system by digital image processing will be pre-

4 9078 Optical Society of America. sented. (Thi brings things to f&l circle, La, simuaming
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Fig. 1. SchnnaticaPCMf-

possible optical system by digital processes!) Thus, back occurring around the quantizer. To show the
this pape has two aims: to discuss the applicability of basic workings of DPCM we resort to a z transform
optCica computations in image data compression arid to analysis. First we replace the quantizer in the comn-
present results of simulating such computations. pression system by the injection of an additive sao

of quantization noise nk as seen in Fig. 2. That is, theL.DC Digta kmage Data Cmrsimaedtohnt npto h unie. h elcmn fquantizer is modeled as a linear addition of noise na to
Iapproaching teproblem of performingimgdaa tekhiptote unzr.Teelcmntfa

Compression by optical computations, we begin by a quantizer by an additive noise source is a standard as
* brief review of the principles behind the simplest of sumption in digital signal processing.6 we use the z

iaecompression schemes, differential pulse code transform notation that
modulation (DPCM). This review is necessary to mo- .FZ
tivate the optical anlge we present below.(4

The conventional structure of a DPCM image data
compression system iseen in Fig. 1. 7%e data com- and likewise for other symbols. Lm Fig. 2we have two
preasion process takes place in the left-hand feedback feedback loops, one at node 1 and one at node 2. For
loop, and reconstruction occurs in the loop at the right. nodeI1 it is direct to write the relation
The basic equations are the following. The past N

:samples of previously predicted data mreused in a liear I jj-

predictor to generate a prediction of the current earn. Usn the:x transform prpryodiscrete convlutha
Pie (identical to that for Fourier transforms and mdituxxs

where k is the index of the current sample, #j is the P~)- H(x)(G(s) + At)L
prediction weight given to each of the previous pro- Solving for P(z) the result is
dicted samkiples, and A~ is the Prediction of the value of ASN(x)G(s)
thekthsample. (From Fig.1I,weseethatta'm-A +8J%,1-Ea
which is the relation between a predicted pixel and the Likewise at nod* 2 we have (in:z trarn)
quantized value of a predicted pixel) The difference

kth ampe i coputd ) Solving for GWzwe have the result

and this difference is quantized 0(Wi (1- K(s)J[fta) + NWaL (3)

A UhinQWdh.(8

where Q is the quantizer function. The quantized 3

difference gA, is then coded for transmission as well as*
bein fed back around the quantizer, where it becomes
input to the prediction computations. As Fig. 1 shows,
the reconstruction process consists of a positive feed- .

back and combination of the decoded differences with
the output of a prediction computation which is iden-

4 ~ tical to that in the original compression loop.
The workings of DPCM are extremely simple but are

sometimes difficult to understand because of the feed- 7g I Rspiummt of qumntim bW udidU asks.

15 8pie to 1975 Vol. 17. No. 15/ APPLEDOP1S 34
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1 those portions of the image which ae predictable m the

QM~ " basis of past samples, i.e., the low-frequency informa-
T " .. tion. This low-frequency information is recreated in

the reconstruction process by the integrating filter.
(2) If the prediction is accurate, the difference dh will

be much smaller in absolute magnitude than the in-
coming data samples fl. Since the quantization noise

with quantizer outsid, of fg ck is directly proportional to the variance of the input, the
Fig. a.A.tion error induced by quantization of the smaller amplitude

differences is decreased. For example, if the original
samples 1k spanned a range of 1-1000 (on some arbitrary
scale), quantization accuracy of one part in 1000 would
require 10 bits of quantization, However, if the pre-diction/difference process yields values dh with a range

The reconstruction system at the receiverof 1-10, the same aolute qutzaton accuracy could
sento have the z transform decrpto d( dic-,tio/dference prsoce yuieszaust i h acc rangeoulseen description (ssuming be obtained with 4-bit quantization and with appre-

there are no transmission or decoding errors) ciable reduction in code bit.

(s() 40) (3) The DPCM proces is causal, i.e., the nature of
1 - H(1 0 prediction implies an ordering to the samples. This

and the resulting output of the over-all system is ordering is shown as 1-D in the equations and diagrams
above, but a 2-D image is naturally ordered by a raster

F,(z) F(s) + N(s). (11) scan process such as used in conventional video systems.
We see that the total compression system adds only In a raster scan the 2-D data available to the prediction
quantization noise to the reconstructed data. We also process are characterized as data to-the-left-and-above
see the importance of the structure of the compression the current position of the scanning spot (assuming a
loop. If the quantizer were outside the feedback loop conventional top-to-bottom left-to-right sann

as in Fig. 3, the equivalent of Eq. (9) would be system).

G() - 11 - H(z)jF(s) + N(s), (12) III. Direc Op cal Analogies to Digital DPCM

and the reconstructed data would have the z trans- Given the three properties of digital DPCM sum-
form marized above, it is immediately evident that one

property of the digital process is not applicable to the
- P () + (13) optical case: the property of causality and the related

processes of prediction. Causality is inherent in the
The differences between Eqs. (11) and (13) can be prediction process, i.e., the past samples are used to

used to highlight the basic operations of DPCM. The compute a prediction of the next sample, a process
optimal design of the predictor weights h. can be carried which assumes that the next sample is unknown until
out by minimizng the mean-square-error of prediction.2  the elapse of the next sample time. The close tie be-
Since it is possible to model images as Markov processes tween this process and the raster scanning of an image
of small finite order (e4g., third order), the optimal is obvious.
weights for hj usually result in a low-pam transfer Optical image formation occurs simultaneously over
fUnction.7 The transfer function 1 - H(z) is thus a high the image plane, and raster scanning of the image is
ps transfer function. This is expected behavior, since artificially a causal ordering upon the totally parallel or
an accurate prediction Jh of the current sample fA noncausal process of image formation. A naive ap-

-,' implies that the difference d, will consist only of fea- proach to constructing an optical analogy to DPCM
' tures that cannot be predicted, Le., high frequency

image details that are not predictable from the general
. low-frequency trends in the image data. Further, since

1[1 - H )] is a high pass process, the quotient 1/[1 -
H(z)] will have appreciable amplitude at low frequen-
cies, decreasing at higher frequencies, i.e., it is the fre-
quency characteristic of an integrating filter. In Eq.
(11), the quantizer being within the feedback loop
causes the transfer function of the integrating filter to
be completely canceled. In Eq. (13), however, the in-
tegrating filter is actually integrating the quantization
noise throughout the image data, and the actual re-
construction errors are much greater.

" 4 The salient points of DPCM compression can be
summarized in the following three properties: .m4I@

(1) The prediction and differencing steps remove f. 4. Cohamt opta mug to DPCM cmlp uoa

29"4 APPIED OPTICS Vol. 17. No. 15 / 15 Se p%~sr 1978
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P%1. L Iuch.om optW systm of IDPCM

1
C16M.48"I ft . "NMMO

oil

would be to replace the causal system presented in Fig. errors in the optical quantization process and cumula-
1 by a noncausal system with the same structure, Le., a tive effects of thse errors after many trips around the
system having the same structure by functioning in the loop, when the feedback system settles into its equi-
parallel optical mode. Such a hypothetical processor librium state.
can be seen in Fig. 4. It is a coherent optical system Third, optical feedback has been found to be possible
with feedback. Fully parallel combination of images only by painstaking measures to ensure component ri-
serve to create negative or positive feedback. In addi- gidity and stability, freedom from random perturb.-
tion, a fully parallel optical quantizer is included within tions in the optical path, control of the coherence length
the feedback loop. of the illumination, etc 1 0 11 The problems arise be-

The equations which describe such a system can be cause the system shown in Fig. 4 is, in essence, an image
written from the diagram of Fig. 4. It is direct to show forming interferometer. The problems aociated with
that the equilibrium output (Le., the output after an it are not necessarily insurmountable, but they are not
initial light wave passes around the system, and it set- to be taken lightly.

,,- tls~'sie114I. thMe Optical Compresson$YUMV -(z)Q - y[f(-7, - f of 1 - At the close of Sec. II, three important points odig-

ital DPCM were stted. Mw third point, auslft, w
(14) dealt with in the conceptual formulation of Fig. 4, Le.,

where p(xy) is the spread function of the filter in the the causality constraint of digitl DPCM wa eliminatd
lower loop, Le., by a noncausal optical system having a Wshematic block

I m .L UP(2W(Z + "A(5 diagram equivalent to digital DPCM. We now ress-
(2.w) f 1- H amine the other two points. DPCM works because (1)

) , ."low frequencies in the imale an be predictd, removed
and Q is the quantizer function. Equations (14) and from tranmision by a difference step, and thes re-
(15) describe the space-domain output of the noncausal created at the receiver; and (2) the high frequenciea,
compression system, Le., the image plane emerging from which are not eliminated by prediction and diffemcing,

4 the compression system is described in the space do- posses only a small amount of the total imge enegy
main by the solution of the nonlinear integral Eq. (14), and can be accurately coded with a msall number o bus.
given the spread function defined in Eq. (15). Given thsem two points, the deveWoment of opical

What can be stated about the feasibility of a system analogies to digital DPCM data compresion can be
such as seen in Fig. 4? The following points are worth perceived in terms of the coding of low-frequency in-
noting formeon, and the coding of the differencs between

First, the coherent filters in both compression and low-frequency and high frequency informsation.
reconstruction systems represent the best defined There are many ways to encode the low-frequency
technology, and methods to achieve the filter response information. A key feature is to encode the low-fre-
are described in detail in the literature. quency information in such a way that low-frequancy

Second, the fully parallel optical quantizer is an iage details can be reconstructed at the receiver
emerging technology. The nonlinear optical methods without undue amplification of the quantintion nobs
of Dashiell and Sawchuk# would be applicable to the It is this requirement which makes necessary placing the

4 synthesis of the quantizer, but the utilization of such a quantizer inside the feedback loop in Fig. 4 and makes
nonlinear element integrated into a system with other analyzing the system subsequently difficult. [Recall
optics, including feedback, raises difficult questions, Le., the discussion associated with Eq. (13) to see that
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placing the quantizer outside of the feedback loop would mial interpolating functions for imae an the B
amplify the quantization noise.] We choose to encode splines, which can be implemented a convolutiona. 14

the low-frequency information by sampling and inter- Of course, if the image data posses an autoormlation
polation, since these processes are simple to implement function which is identical to an nth order polynomial,
optically. these two different approaches (stochastic vs deter-

Figure 5 shows a simple incoherent optical system for ministic interpolation criteria) become equivalent.
the proce. of image data compression. An image of the (5) At the receiver the reconstruction is sIr to the
scene is formed on a mask, which is an opaque screen compression. Low-frequency samples are written onto
with small holes periodically spaced in it. The mask an optical modulator, and identical interpolation is
functions as an optical sampling element. The samples performed to create the low-frequency image. The
extracted from the image by the mask are then optically low-frequency image is summed with the difference
interpolated to create a low-frequency version of the image to recreate an approximation to the originaL
original image. The interpolation is accomplished in (6) All the computations to carry on the compresson
a classical incoherent convolution' 2 using an apodized and reconstruction process can be carried on optically
aperture and a misfocused lens. Then the low-fre- or electronically. The difference between the inter-
quency version created by interpolation is subtracted polated image and the original image can be performed
from the original unsampled in-focus image. Finally, either electronically (eg., use two vidicons looking at the
the samples from the mask and the difference image are two images, with the synchronization signals slaved
quantized and transmitted. together, and create the difference by an operational

The following points can be made about the detailed amplifier) or cin be performed electrooptically (eg.,
workings of the system: using such electrooptic devices as the PROM or the

(1) The samples are a crude representation of the liquid crystal's16). The only digital circuitry required
original image, since the spacing of the samples would would be in the quantization of samples from the mask
be chosen not to satisfy the Nyquist criterion but by a and from the difference image. Note that, since these
desire to represent low-frequency information in a small will be coarse quantizations, 2-4 bits/sample, the as-
number of samples. For example, suppose the original sociated A-D converters will be faster in performance
image had a Nyquist imposed resolution of 512 X 512 than A-D converters used to quantize an analog scene
pixels. Choosing a 128 x 128 sampling mask would at 8-10 bits for input to digital DPCM processing. The
encode the low frequencies at only 6s the data re- optical system of Fig. 5 should be able to operate at
quirements of the original image. Further data re- greater data rates and be significantly simpler than an
ductions are possible because these low-frequency equivalent digital DPCM device.
samples need not be quantized at full resolution, Le., This method of creating a DPCM image is referred
instead of 8 bits/pixel, 3 or 4 bits/pixel could be used. to as interpolated DPCM or IDPCM to distinguish it

(2) The coarse sampling from the mask results in a from ordinary DPCM. We summarize the entire pro-
sampled image which is badly aliased. Likewise, coarse cess in the following.
quantization of the optical intensities sampled by the First, the image is sampled by a mask, and the sam-
mask induces quantization error. However, both ali- ples are quantized and transmitted.
asing and quantization errors are encoded in the dif- Second, the sampled image is interpolated by a low-
ference image (along with image high frequency infor- pass convolution
mation) and are reintroduced into the reconstructedimage (see point 5). ,z)-hzyo(.).1)

(3) The optical interpolation acts upon that portion where h is the PSF of the interpolator, and f. is the

of the image least affected by the aliasing from the sampled image created in the first step.
sampling-the low frequencies. A misfocused lens is Third, the difference image is computed
suitable for image convolution by a low-pass filter." As d(zy) - fzv) - fzy), UM
discussed in the previous sections, the general charac-
teristic of a prediction fi!ter in DPCM is a low-pass and all samples of it are quantized and transmitted.
characteristic. In the system of Fig. 5 we replace the Fourth, at the receiver the mask samples, Le., the
prediction filter of DPCM by an interpolation filter, Le., samples of f., are again interpolated to form a low-fre-
the misfocused lens with associated aperture apodiza- quency version.
tion interpolates between the samples to fill-in the gaps Fifth, the difference samples are added to the inter-
with a low-frequency version of the original image. polator output to reconstruct the originaL

(4) The nature of the interpolated low-frequency A simple theory of the operation of the IDPCM sys-
version depends upon the interpolation criterion tem in Fig. 5 can be readily derived. After the mask
adopted. An interpolation criterion can be stochastic, samples have been quantized, we model the quantizer
e.g., minimization of mean-square-error can be used to as in Sec. I and have
derive a well known result, which determines the in-
terpolator characteristics in terms of the autocorrelation Qf(z )] -fzy) + n1(zy). (18)
function of the data.13 A deterministic interpolation where n, is the noise from quantization of the mask
criterion can be specified to represent exactly a poly- samples. Likewise, a quantization acts upon the dif-
nomial of nth order, and an attractive class of polyno- ference between the original image and the interpolated
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be see in the images presented in the following sec-
tion.

The important feature of this simple analysis of the
IDPCM process is that it demonstrates that the re-
construction process does not grossly amplify the
quantization noise present in the data, a severe problem
with the nonfeedback quantization of Eq. (13). Indeed,
the quantization noise in the mask samples is reduced
by the convolution with the interpolating function, the
actual magnitude of the reduction being dependent
upon the nature of the interpolating function chosen
and the specific region of the image.

V. Slimulations'41 the Optical Comprosslon Schuee
A serine of digital umage simulations have been carried

out to verdy the validity of the IDPCM process. Fiure
6 is an original image, sampled at 9 bits/pixel on a 480
X 480 raster. The compression steps carried out in the

* Fa6. Origial a .d a .ulatwo of lIDPCM Conprm digital simulation process were in the same sequence a
described above. The original image was subempled,
retaining every 4th pixel of every 4th line and creating

mask so second ocessis a 120 X 120 image of mask samples. Each subsmple
samples, s this quantization in this 120 x 120 array was quantized to 3 bits (8 levels)

modeled as with a uniform quantizer, the maximum and minimum

Q~d(xv)]= f(zy) - h(zy)*/.(zy) + n x(j). (19) quantization levels being the maximum and minimum
of the subeamples. Thus, the low frequencies were

where n2 is the noise from the second quantization encoded with 120 X 120 X 3 bits of total information.
process. At the receiver, the received quantized mask These samples were transmitted.
samples are reinterpolated and added to the received The image intensities from the sample mask were
quantized differences. Thus, the reconstructed image interpolated to fill-in the missing data values This was
is done by inserting zeros into the positions where pixels

MJ.() - h(z.y)Vf.(X.y) + nj(, .t)j + fA'). were missin and then convolvingthe resulting480 X 480
- h(zy)*f.(zJ) + MA(sy), array with a 7 X 7 bilinear interpolation kerneL17 The

ftzj) + h(zsy)*nItxy) 4 nx4z.y. js)) interpolated image, being of the same 480 X 480 reso-
lution as the original image, was now subtracted from

This equation demonstrates that the reconstructed the original, and the differences were quantized at NDimage has two noise contributions. The noise term n2  bits, which was varied. The quantization rule was a
is due to quantization of differences and is, hence, tapered quantizer, based upon the Laplacian density
identical in nature to the quantized difference noise used by O'Nea in quantizing differences in digital
seen in Eq. (11). The other noise term is unique to the DPChL7 The low-frequency mask samples and the
IDPCM process and is the convolution of the interpo- quantized differences constituted the information that
lating function witL the noise introduced by quantiza- would be transmitted in a real system. The image was
tion of the mask samples. The noise from a quantizer reconstructed, in a simulation of the receiver, by rein-
tends to have a zero mean (positive and negative values terpolating the low-frequency mask samples from 120
both occurs). The averaging ofvalues which takes place X 120 to 480 X 480 (using the same bilinear interpolator
in a low-pass convolution with the interpolating func. as in the transmitter simulation), and the result was
tion results in the spatial average of the mask samples added to the quantized differences to reconstruct the
tending toward zero, particularly near sharp edges in
the image. An ares of the image where the underlying Total bits required in the simulations can be calcu-
image structure is predominantly low frequency can give lated from the equation
rise to quantization errors in that spatial region with a
single algebraic sign or a predominance of one sign. In Bww MX 4 0 x+4d0 x40xN .
such case the convolution with the interpolating 16
function does not average out the quantization noise of 3 (21)
mask samples in the image. The result is a visually 16

noticeable error in representation of low-frequency where the original image is of size N by N, and ND is the
image structure (e.g., regions of constant or near-con- number of bits chosen to encode the differences. The
stant intensity) but few visually detectable errors number ofbit/pixel is
around sharp edges of the image. This latter fact is
fortunate, since image edge information is usually the B/pidoi -+ N. (2)
most sensitive in subjective viewer evaluations, as can is
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sample array of an image sampled at the Nyquist rate
corresponding to the incoherent diffraction-limited
frequency cutoff of the optical apertur. AchoiceofN
by N less than the sampling rate at the diffraction limit
would indicate a decision to allow a given degree of ali-
asing. In this context, the parameter N does not rep-
resent the sampling of an image much as used in the
simulations being described but represents the infor-
ation requirements of an image acquisition/trans-

mission system with no data compression. Likewise,
in the context of a real optical implementation of
IDPCM, the parameter R represents the subsampling
of the nominal Rth pixel of every Rth line for the data
compression processes of IDPCbM

Figure 7 is the result of encoding and reconstruction
for ND - 3 bits/difference sample. The image is vir-
tually identical to the original image. Figure 8 shows
the same result for ND - 2 bits/difference sample.

Fig. 7. IDPCM comprmio all bit,/pixel (Me text). Some distortion is visible in Fig. 8, but the over-all
quality remains high. Figure 7 has normalized mean-
square error of 0.3%. For Fig. 8 the error is 1.4%. The
normalized mean-squa--e-error is expressed as

Z if,(z,) - f(z.Y)l2
NME -. (25)

The NMSE measure is commonly used to provide an
error measure that is independent of the mean intensity
level of the original image. It is worth noting that the
NMSE values for the IDPCM process in Table I are
comparable with NMSE values in conventional digital
DPCM compression schemes.'

Table I summarizes the performance of the IDPCM
simulation on Fig. 6. The compression ratio is the
bits/pixel of the original image divided by the bits/pixel
of the compressed image. Table I also tabulates the
coding efficiency that could be achieved if a more so-
phisticated method of coding pixel differences is used.

Fig. 8. IDPCM compression a2 bita/pixel (m.. text). Pixel differences were found to be described accurately
by a Laplacian probability density such as used by
ONeal in conventional DPCM.7 Using 8-level and
4-level Huffman codes, based on the Laplacian density,
gives the coding performance shown in Table I. A

In general, if NL bits are used to encode the low-fre- Huffman code saves an additional 0.5 bit (approxi-
4 quency mask samples and if the mask retains every Rth mately), but the cost is in much greater complexity in

pixel of every Rth line, the above equations become dealing with the resulting variable length code words.
N2

.4 Bww - NL + N2ND, (23) VL Concluding Commwt
NThe simulations presented above indicate the validity

B/pixel * + N1  (24) of relatively simple optical systems which can carry out

The quantities N and R are interpretable in terms
of the simulation discussed above. However, even in
a real optical implementation of IDPCM, in which there
is no image originally sampled at N by N resolution, the L PCM P, ie S
parameters N and R are still meaningful Even though Com- Huffan
an optical system would not initially saapile the image Coded , premo Hufma b ompraom
to be coded, it is still possible to express the information bpp W rtio code bpp rto

4 content of the original image in terms of an N by N Fig. 7 3.19 0.3 2.82 2.48 3.63
sampling. For example, N by N could be the size of the Fig. 8 2.19 1.4 4.11 1.78 5.06
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APPENDIX C

ANALYSIS OF FEEDBACK OPTICAL/VIDEO SYSTEMS
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Analysis of Feedback

Optical/Video Systems

As mentioned in Section IV.2, fully parrallel DPCM would be

an ideal component to process the correlation in image data, but

such structures require coherent optical feedback and were dis-

counted in previous research under this Grant. The basic problem

of coherent optical feedback is phase ambiguity; optical wave-

lengths are very short compared to the dimensions of a feedback

device, and the signal phase control must be equally precise over

the entire image plane. We believe we have conceived a structure

which will make it possible to combine the functional flexibility

of optical feedback with the simplified phase control of elec-

tronic circuitry.

We wish to begin with a discussion of the general nature of

two-dimensional feedback systems. Obviously, image feedback, of

the sort used in a DPCM system, involves feedback of spatial and

temporal information, but we will neglect temporal feedback to

introduce the relevant concepts and then examine the associated

temporal statility questions later.

A general structure for a two-dimensional feedback system is

seen in Figure 1. H and G are two-dimensional Fourier transforms

of the associated point-spread-functions, and R and C are the

transforms of the corresponding input and output. It is obvious

that the output of the processor can be written as:

C(uGv) = 1vyc)(u,v) (1)
1) l + G(u,v)H(uv)

"4- - ~ ..-
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where a, 8, andy are constants that are either selectable and/or

represent fixed gain constants of the loop elements. If a is set

to unity and g(x,y) is taken to be the dirac function 6(x,y),

taking s = y the closed loop transfer function of the feedback

processor becomes

I1
I + H(u v)

setting H(u,v) = B(u,v) and letting 8 become arbitrarily large we

obtain

C(uuv) v)(1

B,7 R(uv) (2)

On the other hand, for a = 1, y = 1, and a = 0, we have

C(u,v) = G(u,v)R(u,v) . (3)

Another response can be obtained by setting a = , =Y,

G(u,v) = B*(u,v)(where * indicates the complex conjugate), and

H(U,v) = B(u,v) whereby we obtain the transfer function

c(uv) = B*(u,v) (4)
R( u v) . + IB(uv) 12

which is recognized as the Wiener filter if a = SNR (the signal-

to-noise ratio).

These two examples have been presented to illustrate the

flexibility of a feedback synthesis. Recently Hausler and Lohman

([l] and [2]) have proposed the use of a closed loop TV system

to create a feedback- processor using incoherent light. In this

research negative feedback was achieved by a combination of mod-

ulation techniques and an optical summation using a beam splitter.

While sums are easily obtained optically, considerable care and

expertise are required in implementing differences with incoherent

-o.l. --
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light, as Lohman's example illustrates. It would seem that the

subtraction step could be achieved electronically with greater

ease. Thus, one way of implementing the feedback processor of

Figure 1 would be as in Figure 2. Here r(x,y,t) is the system

input in the form of an electrical signal from a source such as a

TV camera. This signal is differenced with the feedback signal

through the video mixer. This difference signal is displayed as

a CRT image which is imaged by a vidicon or other camera with a

spatial filter corresponding to the point-spread-function g(x,y).

The spatial filter is realized by an apodization coating and con-

current defocus of the lens L1 [3]. This obviously restricts the

transfer function G(u,v) to be one whose impulse is everywhere

positive. However, incoherent image "blur" functions have this

characteristic, so a large variety of realistic image processes

can be implemented. The feedback portion of the processor is ob-

tained through another CRT lens; with apodizing function and TV

camera combination as shown. The amplifiers with gains a, $, and

y are used to represent the gains of various loop elements.

Some important characteristics of Figure 2 can be summarized

in the following points:

4 1 (1) All feedback effects operate with the video

(temporal , electronic) signal, hence the

problems of wavelength and phase references

are easily dealt with. For example, using

a conventional 30 frames per second, 525

lines-per-frame TV system and assuming tem-

poral bandwidth along a scan-line equivalent

*._ Ii
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to 500 plus pixels, the nominal bandwidth of

the video mixing process would be 7.5 MHz.

A'llowing sufficient additional bandwidth for

horizontal and vertical synch signals, blank-

ing pulse, D. C. restoration level, etc.,

gives a 10 MHz bandwidth, for which the wave-

length is 30 meters. Judicious choice of

laboratory set-up should keep the cabling in

the loop of Figure 2 to one meter or less;

hence, any wavelength and phase problems as-

sociated with the feedback shown in Figure 2

should be negligible.

(2) The temporal data in the video signals are

a means to encode x and y data. Since the

loop filters are spatial filters the result

of the combination of t'he temporal signals

and the spatial filters is an overall spatial

filter with an input-output response given

by Equation (1), where G(u,v) and H(u,v)

L are the two-dimensional frequency responses

of the point-spread-functions encoded by the

apodizing transparencies.

(3) The system shown in Figure 2 takes a video

signal as an input and yields a video signal

as output. Hence, the system could, at least

conceptually, be used to process video images

in a real time environment. Indeed Lohman
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has described this sort of processor as an

iterative processor running at the TV frame

rate 121.

(4) The ultimate in flexibility and interaction

would be reached by using a programmable light

modulator for the apodizing transparency.

Combined with a servo on the focus control of

the vidicon, a great variety of optical trans-

fer functions could be rapidly inserted.

The concept of this feedback processor as an iterative algorithm

is intriguing in that it stimulates the question of the inter-

action between the temporal nature of the x and y data and ;aster

scanning of the x and y data. Furthermore, if one envisions the

processor of Figure 2 as a parallel processor in the x and y di-

rections then it effectively consists of a large number (depend-

ent upon the spatial resolution of the TV components) of temporal

feedback loops in which time stability is a question. In this

light we must devote some research effort into the temporal as

well as the spatial stability of the system of Figure 2. In

reality r(x,y) is a function of time, r(x,y,t), along with c(x,y,t),

and h(x,y,t). Time is a variable in g(x,y) and h(x,y) simply

.7' because of the finite response times of the video signals. In

* addition t is included as a variable in g and h to allow the flex-

ibility of tailoring the temporal response of the loop to insure

stable operation. Inclusion of the loop temporal characteristics

produces a relation between the output and input in the transform

domain as follows:

I.!r.•
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C(u v~s) G(u,v s R(u,v,s) (5)C(UVS =1 + a$Y G(U V,s)H u,v',s)

where

G(uvs) = fff g(xyt)ej 2 w(ux+vy)estdxdydt (6)
_CD 0

H(U,V,S) = .jJ h(x,y,t)e-j2 1(ux+VY)e'Stdxdydt (7)

-~0

and

R(u,v,s) o fff r(x,y,t)ej 2w(ux+vy) e- t dxdydt (8)
p~ -w

We recognize these expressions as two-dimensional Fourier trans-

forms in the x and y directions with a Laplace transform along t.

If we can make the assumption that h(xy,t) has a temporal re-

sponse much faster than f(x,y,t), h(x,y,t) can be assumed to be

independent of t so that H(u,v,s) = H(u,v). Furthermore, if the

TV camera in the forward loop can be chosen so as to have a tem-

poral response (i.e., a finite rise time characteristic of some

sort) independent of the spatial coordinates x and y, then G(u,v,s)

= G(u,v) GI(s). Here Gl(s) is the Laplace transform of the tem-" 1
.*.j poral characteristic of the forward path TV camera. The input-

output relationship of Equation (1) becomes

ya G(uv)GI(S)
C(u,v,s) = 1 + ct GI(S)G(u,v)H(u,v) R(u,v,s) (9)

An interesting research question is the effect of a particular

GI(s) upon the feedback processor's performance. Consider r(x,y,t)

= r(x,y) for t > 0 so that R(u,v,s) = R(u,v). in addition if we
'

-i -]~~-.
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assume that Gl(s) = which would represent a simple low pass

filter characteristic in the forward camera we obtain

C(u,v,s) = f ya G(uv) Ru,v) (10)
s s. + 0 G(u,v)H(u,v)

Applivation of the final value theorem for Laplace transforms pro-

duces

lim (u,v,t) + G vH(u) R(u,v) (11)

where

C(u,v,t) = if C(xyt)e'J2w(ux+vY)dxdy (12)

It is clearly seen that this is the same relationship as we had

before in Equation (1). Because most cameras have a finite time

lag between the image-induced charge being stored and the video

signal output, some shift in the x direction is anticipated. This

again raises the question of the separability of the raster scan-

ning and finite time response of the TV camera. There is however,

an extremely interesting way of circumventing this problem that

deserves some attention. TV camera tubes such as the vidicon or

the plumbicon can be used as image storage cubes. This is accom-

.Iplished by focusing an image on the photo cathode while the scan

is inhibited. The image induced charge will be stored (for a time

dependent on the tube dark current) until the scan is initiated,

where upon the image will be destructively read out as a video

signal. By suitably blanking the CRT's and inhibiting the scan

of the TV cameras in the system of Figure 2, we can achieve its

sampled data counterpart as shown in Figure 3.

r 7X
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Operation of the feedback processor can be described as fol-

lows: closure of sI unblanks the forward path CRT and initiates

the scan* of the feedback path TV camera. s2 is open at this time

which blanks the feedback CRT and inhibits the forward path TV

camera scan. After completion of the feedback TV scan, the spa-

tially filtered error signal is stored on the forward-path TV

camera. sI is opened and s2 is closed unblanking the feedback

CRT (and initiating the forward TV camera scan). Upon completion

of this scan, s2 is opened and the spatially filtered output sig-

nal is stored on the feedback TV camera. This process is then

repeated.

It is relatively straightforward to show that this scheme

produces a sampled data feedback processor whose block diagram

is given in Figure 4. The input-output relationship using a Z

instead of a Laplace transform is as follows:

C(u,v,z) = ya Z IG(u.v) R(u,v,z) (13)

S1+ a$ Z IG(u,v)H(u,v)

This produces the following recursion

C(u,v,nT) = G(u,v){yaR(uv,(n-l)T)

- a H(u,v) C(u,v(n-l)T)}

where

JJ~ ~ -C~~~Te27rux+vy)dxdy
C(u,v,nT)= C(xy nT)e (15)

r.f

R(u,v,nT) = JJ r(xynT)e'j2w(ux+vY)dxdy (16)

*Scan means single frame scan since a single scan removes almost
all of the stored charge in a plumbicon.

i- ' ."-'
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Again, assuming that r(x,y,t) = r(x,y) for t > 0 we have R(u,v,z)

, and application of the final value theorem for z trans-
z-1

forms gives that

C(uv,) =a G(u),v R(u,v) (17)1l a B(u vH u,v)

as before.

Thus we see that this formulation also produces the desired

result. However, the optical readin and electrical readout func-

tions in the TV cameras have been separated by the sampling func-

tions simply by the fact that the image induced charge is allowed

to accumulate prior to the initiation of the scan. This effec-

tively eliminates the temporal characteristics of the x and y data

due to raster scanning.

The utility of the incoherent optical structures we are dis-

cussing can be readily applied in a variety of ways. The appli-

cability to image filtering is direct from the equations derived

above. The applicability to DPCM is equally direct. A DPCM

structure such as seen in Figure 5, would be readily implemented

using the frame-storage techniques discussed in conjunction with

Equations (13)-(17) above. Thus, N2 parallel DPCM loops could be

' 4 created by the optical/video hybrid components at a reasonable

cost.

1
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A TWO-CHANNEL MODEL OF IMAGE

PROCESSING IN THE HUMAN RETINA

- Reprint from SPIE Proceedings, Vol. 199, 1979.
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A Two-Channel Model of Image Processing in the Human Retina

Douglas Granrath and B. R. Hunt

Digital Image Analysis Laboratory
Department of Systems and Industrial Engineering

University-of Arizona
Tucson, Arizona 85721

Abstract

A model describing the decomposition of imagery in the human retina is developed based
on the retina's cellular structure. Two types of retinal cells, horizontals and amacrines.
perform spatial averaging across the retina to form a low-pass image channel. This low
spatial frequency Information is fed back to the retina's receptor cells to form a differ-
ence channel of high-passed spatial frequencies. Such a model is suggested by electro-
physiological as wll as psychophysical evidence. Analysis of the model characterizes the
low-pass channel as a constrast channel and the difference channel as an edge detection
channel. Application of the model to image quality assessment suggests a two factor
approach involving metrics in the model's eye domain.

Introduction

Because of its great importance to our perception of the outside world, human vision has
been seriously studied for centuries and is being studied today by many scientists in a
variety of disciplines.. Each line of vision research is aided by the dictates of Its
discipline, but in the process becomes limited by them as well. An experimental psycholo-
gist, for instance, studies vision by presenting light stimuli and recording the observers'
responses, but he is then limited to input/output descriptions of visual behavior. The
anatomist details the structures which comprise our visual system, but traditionally does
not study their function. Function is studied by the physiologist, but resulting descrip-
tions are limited by the enormous complexities involved. The need then exists for a disci-
pline which can handle these complexities and provide theoretical descriptions to describe
visual behavior on a more global level.

In its attempt to provide unifying descriptions of the complex machines man builds,
engineering also provides theoretical tools to describe nature's complexities. Engineering
models which aid in the design of image processing systems can be used to describe the
human visual system as well. Analogies can then be made and components of our visual
system Identified which do image forming, sensing, coding, and transmitting, much like
their physical jounterparts. A good example of this is the vision model by Charles Hall
and Ernest Hall as shown in Figure 1. Each component in the model corresponds to a com-
ponent or a process actually found in the eye: the low-pass filter models the ability of
the eye's optics to form an image on the retina, the brightness function models the point-
by-point transformation from light intensities to their neural representation, and the high-
pass filter models the spatial Interactions resulting from the cell connections In the
retina. Such structural validity is a strenoth of the Hall and Hall model, but its retina
model falls short in this regard. A spatialy continuous model is valid for the low-pass
filter since a continuous radiometric image is formed upon the retina, but the high-pass
filter models the spatially discrete image processing which occurs in the retina's cells.
Moreover, the retinal cells are fixed In their functinnal relationships with one another,
and this structure imposes constraints on the image processing performed there.

Low-Pass Logarithmic -[ High-Pass

Filter Brightness "1 Filter
FunctionI

Figure 1. The Hall and Hall Model of Human Vision.

Cell Structure in the Human Retina

The retina is a network of nerve cells which are "hard wired" according to a particular
organizing scheme. Although some of the connection parameters may differ in different
areas of the retina and for other2 vertibrate species, the same basic scheme pervades the
visual organization of the retina . Figure 2 is a schematic representation of this organ-
izing theme. The retina first senses the image with a layee of receptor cells. Two types
of receptors, rods and cones, and three types of cones are found. Cones form our high

" " 1 "--" . ' " ..
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intensity or photopic system of color vision, while rods form our night vision or scotopic
system wkich is achromatic. Just beyond the receptors is a thin layer of neurons called
horizonta3 cells which connect receptor cells together from neighboring regions of the
retina. A typical horizontal cell near the center of the retina (in the fovea) receives
signals from seven cones; a foveal cone for its part feeds between two and four horizontal
cells . The horizontal cell then sends its signal out via a small number (approximately 4)
of long, thin arms called axons to connect with an unknown number of receptor cells in
neighboring regions. No horizontal-to-horizontal cell contacts have been documented in man,
but they have been found in cat and rabbit retinas. The horizontal cell network is, there-
fore, probably not a continuous one in man, but considerable overlapping of its branches is
in evidence.

Receptor Cells

Horizontal Cells

Bipolar Cells

Amacrine Cells

Ganglion Cells

Optic Nerve

Figure 2. Schematic Diagram of Retinal Cell Connections.

Forming the central layer of the retina are the bipolar cells. With tingle input and
output arms of equal length, the bipolars connect the outer with the inner retinal layers,
running parallel to the direction of light. Two types of bipolars connect with the cones
in the fovea: midget and flat bipolar cells. A midget bipolar normally connects to one
cone, while a flat bipolar connects to about seven cones. Each cone in the fovea connects
to at least one midget bipolar and one or more flat bipolars. The midget bipolars thus
appear to carry high-aCuity image data and are likely color-coded according to their
attached Sones; the flat bipolars carry small-area averages which are probably monochromatic
in nature .

The inner retinal layer is composed of amacrine and ganglion cells connecting to the
output arms of the bipolar cells. Like horizontal cells. amacrines connect laterally
across the retina, but unlike horizontals they form a functionally continuous network. The
amacrines connect with bipolar axons in a way which allows for feedback to a bipolar from
neighboring bipoars; amacrines also connect with one another and with ganglion cells.
Approximately 10 ganglion cells form the final retinal layer; their very long axons bundle
together to form the optic nerve, which contains all of the image information to be used by
the brain.

The lateral connections of the horizontal and amacrine calls provide the basis for a two-
channel decomposition of images. The horizontal cell network performs some degree of spa-
tial averaging on the image at the first level of neural processing, thus forming a low
spatial frequency version of the image. This information is fed back to bias the receptors,
which make them respond relative to a local brightness average. The midget bipolar cells
then transmit this high spatial frequency information with the local averages removed, while
the flat bipolars transmit some form of the low spatial frequency information. In a similar
manner the amacrine cell network provides for bipolar - bipolar feedback, and additional
spatial processing may take place there. Ajacrines appear quite complex in their function,
providing for spatial-temporal interactions and for image color encoding . The two-channel
organization of imagery is in evidence at the bipolar cell level, however, before the

A .
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intervention of the amacrines.

Two spatial channels are thus transmitted by the ganglion cells to higher areas in the
brain. Two ty~es of ganglion cells have, in fact, been observed: sustained and transient
ganglion cells . The sustained ganglions respond in a temporally steady manner to a con-
stant stimulus and appear to be somewhat more numerous in the fovea than in the periphery
of the retina. Transient ganglions, on the other hand, respond primarily to stimulus
changes and exhibit decaying responses to steady state stimuli. As far as spatial fre-
quencies go, the transient ganglions have been experimentally associated with low spatial
frequencies and the sustained ganglions with middle to high spatial frequencies. Thus, the
two channels which are formed by horizontal cell feedback to the receptors and are in evi-
dence In the bipolar calls, are separately transmitted by the ganglion cells to higher
visual centers in the brain.

Some recent findings point to a two-channel orgainzation of imagery in the brain's higher
levels as well. 7 1n recordings from the foveal striate cortex of rhesus monkeys, Poggio,
Doty, and Talbot report two types of spatial frequency responses: band-pass-and low-pass.
They observe that low-frequency grating stimuli activate only particular low-pass neurons,
depending on whether a contrast border falls within their receptive field. A band-pass
neuron, on the other hand, requires a number of repeated edges (as in a grating) at an
appropriate spatial frequency before it will respond, and at high frequencies only band-pass
neurons are activated. At intermediate spatial frequencies of around 4 cycles/degree.
significant numbers of both types of neurons are activated. All of the neurons they ob-
served fall into one of these two categories, indicating a pervasive two-channel organiza-
tion.

A Two-Channel Model of Spatial Interaction In the Human Retina

A two-channel model of retinal image encoding will now be expressed mathematically. The
model will be two-dimensional, discrete in space, and achromatic. (Figure 3 gives a block
diagram.) A discrete version of the continuous light intensity image which is optically
formed on the retina constitutes the input image and is symbolized by the non-negative var-
iable u . The intensity-to-brightness mapping occurs first in the model and is performed
in a poit*-by-point manner by: xii -log(1.. u1 )

x44 represents the brightness image in the receptor'cells. If we now define yn() and
" to 4e the Channel 1 and Channel 2 output images in the optic nerve, the remaindi of

t model can be expressed in two discrete equations as follows:

Al) ( s1K) h' )  (2)11J 1 k k,t'XA-k.J-t }

yjj *[K h( 1 ~(2)x

(2) .r(Kz [Z Z .'.x., - Z Z h(1 ).x, .'j (3)yj 2an n k t L i-I.j- 1

There are two unit sample responses or weighting functions indicated here: h(1 ) is a broad
weighting function which 12 1els the relatively large inhibitory regions created by the
horizontal cells, while h is a narrow weighting function which models the smaller ex-
citatory regions. Both weighting functions are Gaussian In form and are radially symmetric
about the origin; more will be said about this choice later. The function S(.) is a spatial
sampling of the low-frequency image in Channell of the model. This sampling is intended to
model the likelihood that there are fewer connections for the low frequencies than for the
high frequencies. The second channel of the model, Equation (3), is formed by the subtrac-
tion of the low-frequency image of Channel I from a high-frequency representation of ,
Image. In modelling the retina at the fovea the high-frequency weighting function, h
would have essentially a one bipolar cell extent, and Channel 2 would reduce to:

(2) . . h 1' x '  )'  
. (4)

A second nonlinearity Is indicated in Channel 2 of the model by r(.}; this is a saturation
operator which models the bipolar cell's response limitations to receptor input. Finally,

KI and K2 are constants which model different channel gains.

Equations (1), (2), and (3) constitute a two-dimensional discrete model of neural imape
formation in the retina. The model has two nonlinearities, namely log (1 * u .) and 11.,.

Because of this, It Is important that the model be structurally valid, I.e., Ie nonlinear-
ities must come at the correct places in the model. With linear, shift-invariant models
structural validity is unimportant; the entire model could, In fact, be represented by a

single transfer function without altering in any way the model's input/output behavior.
Changing the location of a nonlinearity, however, changes the input/output behavior, so it

b~t *, .,d
' I "°. * ,* " '
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must be placed carefully for the proper overall model behavior. Since the two-channel model
has been built with retinal structure in mind, it has been possible to incorporate the non-
linearities in their proper locations.

x InhibitorySaptgy)

Excitatory dpt uction ca 2b• Filter i aurtonyj
h(2) >() t

Figure 3. A Two-Channel Model of Spatial Interaction In the Human Retina.

The idea of using weighting functions to describe retinal behavior via spatial convolu-
tions is not a new one. There has not been agreement, however, on the form the weighting
function should take. A dtsculion comparing different typos of weighting functions can be

found in Macleod and Rosenfeld . They prefer Gaussian type weighting functions and in
particular a dual-Gaussian function of the form:

w(x) - exp(-Zx/s) (s/s') exp[-(Zx/s) 2 (5)

The widths of the excitatory and the inhibitory regions can be adjusted separately here with
the parameters s and s', but the positive and negative areas undef1 ;he cury:are kept equal
to one another. Use of single Gaussian weighting functions or h and h in the two-
channel model will result in a weighting function in the form of Equation (5) for the high-
frequency channel of the model (Channel 2). In two dimensions the weighting functions will
be radially symmetric (this is an approximation since the retina is somewhat anlsotroplc)"
and can then be expressed as:

h(i 2 ) . exp{-(k 2 + t2 )/p 2 ) (6)k,i

where the spread parameter, p, or p ,uniquely specifies the function. Choice of the proper
values for the model's param ers hs been accomplished by computer simulation and compari-
son of the sivulation results to experimental data. For foveal and near-foveal regions,
comparable frequency response is obtained with p a 10 and p - 0 5, and a comparable recon-
structed image is obtained with K - 1. K a 3, 1 Channel 1 iampling ratio of 16:1, and
Channel 2 saturation levels of + 1/6 of tie maximum Image range in brightness. Details of
this work can be found in the althor's dissertation9.

Choice of the logarithm for the intensity-to-brightness nonlinearity its in dject corre-
spondence with Hall and Hall's model. Others have used the cube-root function , but this
choice is not directly applicable here due to differences in model structure. Both choices
for the brightness function yield sufficient dynamic range compression of intensity values,
but the logarithm and the cube-root functions possess different non-linear characteristics
which provide the basis for a choice. Two non-linear characteristics of the logarithm

4, function will be explored in the following section on model analysis.

Analysis of the Two-Channel Model

The logarithmic brightness transform at the beginning of the two-channel model alters
model behavior in a non-linear manner. In addition to global compression of the input data,
the logarithm produces two effects of significance. The first of these is an automatic
gain control of small amplitude signals, which enhances contrast at low light levels. The
second effect occurs in conjunction with a multiplicative model of image formation and leads
to a characterization of the model's two output channels. Mathematical treatment of both
effects will be given in one continuous dimension.

Consider a small sinusoidal modulation of amplitude A at a relatively large constant In-
tensity level, I, as the Input:Su(x) • I Acos~x. (7)
If contrast is defined by:

s I max Imtn
I max imtn (8)

then the contrast of this input is simply:

Cm " A (9)
in
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After being log transformed, the input signal becomes:

f(x) • lOgb(" + 1 + Acoswx) , (10)
which can be expanded in a Taylor series about (1 + 1) as follows:

f(x) 1 A-cosow - A2 Cos 2 w +1+2(1 1)' .11 1

Since I is assumed large and A small, the first two terms constitute a good approximation
to the output waveform:

M -I I csh (12)flx) - (atn(1 I) 1,i12

The contrast derived from this approximation, now, is:

A -. Cmn
tout I +n(1 * -I * (13)

a result which is independent of the original log transform's base, b. In comparison to the
input contrast. te output contrast has been approximately reduced (with I large) by a
factor Of (Ln I)° . This means that the small-amplitude modulation of Aj at an average in-
tensity level of Il must be larger by a factor of tn(! - in) In order t yield the same
output contrast as a modulation of A0 at a lower averaie intensity level, 1 n after both
have been log transformed. In terms of input parameters, this condition caR be expressed
as:

C1  t Ln(I 1 - Io)C 0  , (14)

which relates input contrasts that are equivalent after log transformation.

A logarithmic intensity/brightness transform provides global compression of the input
image's dynamic range and boosts small signals at low average intensities relative to those
at high average intensities. When acting in conjunction with the model's two-channel linear
filter, the log transform has another interesting feature, namely the separation of object
contrast from scene contrast. Analytical treatment of this effect requires a specific
model of scene formation, but results of the analysis characterize Channel 1 of the model as
a contrast channel and Channel 2 as an edge detection channel.

A basic assumption must first be made concerning the formation of a scene's radiancepattern. That is, the radiance from a scene Is the product of two components,.an illumin-
ation component and reflectance component. One-dimensionally this can be expressed by:

u(x) - Ur(x).ui(x) (15)

with the constraints:

and: i ui

0 < Ur,min - u - Ur,max  1. ClE)

Stockham 11 has argued for the validity of this model, and while setti ngu,4 , equal to
.005, points out that .01 is a likely minimum in virtually all situatlonst"Te important

4 information in a scene is that which tells us something about the objects in the scene; this
information is contained in the reflectance component of the radiation, u . Varying illu-
mination across the scene combines with the object information in a multitlicative manner,

. making object detection difficult for a linear detector of radiation. An ideal object de-
tector must somehow separate the reflectance from the illumination component in order to

N Osee the objects In a scene.

The two channels produced by the retina are able to separate the reflectance and illumin-
ation components if it can be additionally assumed that the illumination component is of
lower spatial frequency content than the reflectance component. An analytical example will
suffice to show this. Let,

ur(x) a .5 + (.49)mrcOS6)rx ; 0 C mr 1 1 (18)

be the reflectance of an object of spatial frequency wr and modulation m . The minimum re-
flectance possible here is .01 and the maximum is .gg. Using the modulation definition of
contrast given in Equation (8), the contrast of ur is:

Cr ..98 mr. (19)

*v-
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ui(x) * I + Acoswix , I A * (20)

be the scene illumination with a OC level of I and an amplitude of A; the contrast of u, is:

The following signal is thus taken as the Input to the two-channel retina model:

u(X) - 1.5 + (.49)mrCOswrX].[I + Acoso)1x]. (22)

Let f(x) be the log transformed signal:

f(x) M log 0l[1 + u(x)), (23)

which can be expanded in a Taylor series about u(x):

f(x) - 1og10 (u(X)i + Ml [-.x' (4n C2x) + C3x) J
Since the photopic region of vision is being modelled, u(x) is large and the following ap-
proximation can be made:

f(x) * f(x) - logIOtu(x)l (25)

Substituting in for u(x) gives.

f(x) a logi0 (ur(x).ui(x)l , (26)

or,

f(x) a log 10 (ur(x)l + log 1O(ui(x)I (27)

With the input signal of Equation (22) this becomes:

f(x) - logol[.5 + (.49)mrcOs&)rXi + logl(I + Acoslaix. (28)

SThis signal next enters the linear portion of the model and produces a Channel I output,

(x), and a Channel 2 output, y (x). In order to find expre stons for these two outputs
i terms of their intervening trinsfer functions, the input, f(x), must be expressed as a
sum of pure sinusoidal components. The second term of (28) can readily be approximated by
the first two terms of its Taylor's expansion since I is much larger than A in the photopic
region of vision. This gives:

1°910[1 + Acosaix) ; 1°g 10 (I) * A.s 1mix (29)

More terms must be taken for an equivalent Taylor's approximation of the first term of (21);
I0910(. 5 

4 (.4 9)mrcosar xl ; 1ogl0.51 + (.426)mrcoSiwx

(.209)mr 2cos 2rx + (.068)mr3 cos 3 rX - (.017)mr4cos 4Wrx (30)

Trigonometric substitutions are made to eliminate the powered cosine functions, yielding:

1og1(.54 .2 -. 0m4) 3 .2.*.
los10.5 + (.49)orcoswrxl .301 - ,1 0 4or - r (.426m r . .051mr3 )COSO rx

(104mr2 + .006mr4 )CoGS r x + .O17mr3COs3mrx - .002mr coslmrx (31)

The five terms here include a OC term, a fundamental frequency term, and its first three
harmonics, with each term a function of the reflectance modulation m With the addition
of the two terms of Equation (29), a completed approximation of 1(x )n terms of distinct
spectral components is finally given by:

f(x) * [loglo(i) - .301 - .104Ur2 - .006mr41 + A.rrlo)osmlX [.426m r +.Oslmr
3]Cos2Urx

1 [.104m r2 + .008mr4Ilcos2rx * .O1?mr 3 cos3urx - .002mr4cos41rx (32)

The log transform thus reduces the global intensity of the image (first term in (32)),
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attenuates the illumination component (second ter) by U-Ln(10)) 1 nd changes the re-
flectance component from a multiplicative to an additive component (third term), while
also introducing harmonics (last three 'erms).

The approximated brightness signal, f(x), is next input to the eye model's linear filter
which produces a low-pass output. y (x), and a high- or band-pass output, y (x). Let G ()
and 6 (a) be the modulation transfer functions of Channels I and 2, respectvely. If ii Is
assumid that 6 (0) cuts off by mr with increasing w and that G2(m) cuts off by oi with de-
creasing w. thin the outputs can be expressed by:

;1 (ma) * G(0)(1Og1 0 () - .301 - .104mr2 . . ) * ( A costxJ , (33)

and,

Y2 (41) ' G2 (I4r)(46r .0S~mr 3cosmrx . 2 (Zwr)1.104mr
2  

.OO6mr4|cos mrx

+ G2( 30r)[.O17mr 3 cos 3arx - G6(4*r)(.OO2mr 41cos4ftrx (34)

An analytical conclusion can be made from Equations (33) and (34). Namely, the two-
channel retina model acts to separate illumination Intensity and contrast information into
one channel and object reflectance information into the second channel. This is a desirable
feature of a detector of objects to have, and it is apparently a design feature of our
retinas.

Conclusions: Implications of the Two-Channel Model

The two-channel model describes how and suggests why the retina decomposes an image at
the first levels of neural representation. The low-frequency channel allows the eye to
represent a relatively large luminance range simultaneously (approximately three orders of
magnitude). It also acts to bias the high-frequency channel, allowing the edge (high-
acuity) data to be represented easily within the dynamic range of the bipolar and ganglion
cells. The edge information gets a high priority in neural coding terms; more neural coding
power goes to represent the high-frequency image compared to the low-frequency one. This
implys that loss of Image acuity and the edge information associated with it is viewed more
critically by the retina than loss of global image contrast, which is represented mainly by
the low-frequency channel. This has been the case in image quality assessment studies whereacuity, s consistently chosen as the primary quality factor with contrast the secondary
factor''

An assessment of Image quality can be made via the two-channel model. Image quality
would be expressed with two factors: edge quality or degree of acuity and contrast quality.
Experiments could be performed in which an original image is degraded by various combina-
tions of blur and contrast to yield a set of test images. Quality measures could be com-
puted for these test images by using a difference metric between their eye domain versions

and an eye domain version of the original. Each test image could then have a pair of
global quality measures for a given setting of the eye model (say, foveal) and a local pair
for any desired subregion of the image. A factor analysis and a step-wise regression
analysis could be performed between these metrics and results from a viewing experiment.
The resultant would be a multiple regression equation predicting subjective image quality
as a function of computable image metrics.

The two-channel model also implies that edge information is of fundamental Importance
to subsequent levels of neural processing in the brain. All of the image information must
pass through the bipolar cell array, at whicn point the two image channels are already in
evidence. The inner synaptic layer of the retina then receives these signals from the bi-
polars as input. This layer thus deals with edge images and contrast images, and any model
at this level (a color coding model, for instance) must assume this. That edge information
its part of the languaeN of the retina has been shown experimentally. In a recent Scien-
tific American article experiments are described which show that if an edge separating an
inner from an outer circle of two colors is eliminated by stabilizaing the image on the
retina then the color difference disappears too. Thus, the edges or borders in a scene are
extracted from the image in the first layer of the retina and are basic to all of our visual
perceptions of the world.
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Dennis G. McCougMyr
Depornmv of Svstoms & indusmal Engunsnng. Unervfut of Anwne

Tucun. Anions 85fl

Abstract

1his pper reents an image coding algeritm uirng spline funictions that is ~titive with Uhe mor.
convetional orthogonal transfon menthods at data rates of 1 bit/pixel or less. Spline coding has theade
attraction of an optical implemetation arising from the fact that least squares image aproximations also
produces least squras approximations to the image derivatie. A first order spline 22sused to approximate
the proper order derivative of the imae %tose order is daennined by an analysis presene i= the poe.
7h imge derivative is then encoded and transmitted o the user ft~ reconstructs the image by a k-I order
integration which can be dam optically.

This paper is conoorned with the development of the wccpts of inage degrees of Free 4 and antropy from
an appxcximrticn theoretic viewpoint fo plction to image coding. -fe =%oapts are used to develop a
coding method using spline functions that can be implemnted using optical processing techniqus-.

Traating U.e I grees of fredo of an imnage as approximationi problem arises quinte naturally in U.s on-
toxt of uzage coding by transform nothods, %here an orthogonial tansformation is performed an a anpled
uimg matrix. A bandwidth reduction is obtained by transmnitting onaly thos transform ocefficients above a
certain threshold whose level is consistent with the desired error 1l1.

In this sense, the degrme of Free4 of U.e image at an error of magnitude epsilon, or more suocinctly,
Uhe epsilon degrees of F eI in taunof the orthooal funictions usned, Mw(c,,s), is simply the numbear of
fuctions in the set (s) required to achiew Uhe desired error, c. Thle overall data ratP R(O.c) is Uhe pro-
dut of the number of bits, Nrequired to adequately represent the oeafficients and the number of coof-
ficients, DW(,o) and is givn by:

Impici inthis is the assumpticontathovrlcoigpoeueanbsprtditowoat:

in arttothecopctim-of-image-unrg property of orthogonal - am-ftruatiens. The difficulty in quanti-

This wudsstoindicate that a suitable set of transform functions would possess both good approxi-
meting properties, and transform coefficients whoe dynamic range is of teorder of that of Urn original
image pimls. This idea could be exvided to finding the best set (ol iinimizing R(#,c) i.e.,

min R(*,c) - minCN.M.0ec) - RWc - KNp7(C)

Agin trn assumption is mob that Uhn quantization end qpWaimatinstp con, be separated.

itlu, aim method of finding the aps i -eree-of-freebm, or the minimum data rate, would be to find U.e
set of functions whiich, when used to ap~mUsit the Amae at en rror ran. epsilon, would requir the
fewast nmber of functions. This is a vay difficult preblem so U.e results in this work will be represented

* using kth order spI 4 . Splines areI drn ue to their excllent Image appcimemtion properties (21, therir
desirable computation anroersis d Urn feasibility of an optical implmentation.

Methods (Least faemsSplice maUhom)

* IIdle the determination .2t each sto of suc a best appmoxmating spline is simply a nonlinear minimize-
tian problem over Urn notst defining the splice, it :Ls conpztAtionally infeesible. Thin we mst follow
Docor [31 and settle for spline approimatin with good, if not optimal, knot placmenits. In what follows.
an eaily impemene kunt placemet ,nthd will be given that can result in a significant errorreuto
Over Urn uniforma knt case. Ila results will be developed using splices. giving the following kth ore

S~tfVal. 140A~sphuens.ofOqW&F1190 AwVweV (IM)/ V
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sline appromatiom !(x,y):

f(xy) - N iSJNik (Yx)N j I(n;y) kN A (xy) )
i-i j- xi

%*me N (-x) ame e rmmilized B-oplnes of order k (degree k-1) described by DeBoor (4], and a n
are Urn'Ai actr w in tto x ard y directions respectively. he spline coefficiants, aae obtan lmd Sy
solving the tilowing ystms of equati n:

N my
f(xL,y m) - Dj 1 SijNik( x)mdNjk CL(hY) (2)

for L-1,2 ... N and m-1o2....N. In matix notati this b- -

y x2Y y jk y

whr-e T indicaes mtuix transpose. To supiify notation let

[f(xtym)J - IF]

[NJ (C-). I i,k (Ix ) I

IN -= j,k(_q;¥m) ]

Equti (2) becoms

~~IF) [NJ is) SI] IN] ()

sinos N>N and N>N,, in geral, equation (2) cannot be solved exactly. However, the spline coefficients
t:at na-ze the grolnzed least-squ s e c, gve by the exwess .. :

f: I(xt,) -1(xtyw) 1

£ N N

z I I f(xt,yml 2

can be obta.-..d by taking I t the :

[Sij][[N] )N] _I[N] ) I ] [ ] -N€ID)

The runainder of this subectim is corned with the possibility of mtsectioning the Lmge aM using
different )a= desities in each of the subsctions, and with the quantization of the spline oefficients.
It is reanable that submeptioning siht prvide fruitful rasultm, when one cnsiders an erLr bound
given by Sdrultz (5] f ktr order spliases. VlVlii that the error is given bY trn L2 A - Il" 112 of
he differec beween te functim and its appr9oi Lsti. this bound is given by

t4 7r plammont of ttr knots, the namter of knots, and the nutbar of spine coefficients me all equivlent
Any one is sufficimt t d etnlm the others so that thes fom vill e used ineraneably in the

2 iSPIfVal 1VApstcm Dw lkt. hn w~cwig11878)
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-5 k ak ak a k/2 fxy 1
11f-'112 - C() I I --k f(x'y) 112  y a{ -k /fxyl2

ak (

+ I I f(xy) 112  (4)
y

where max fax(&.+,-&i, max (njz'-y

C - 0(4)

k =ee iteW

Thus if the image derivative enerW is large only over a smal region, then using a umiform knot kth order
spline with knot width equa ling * as indicated by equation (4) should result in an overly good approximtin
of the image in dxose regions whsere the imsge derivative energy is low. Thus we should be able to obtain
reasonable results by employin a different kth order spline with uniformly spaced knots in each subsection
if the lot density in eadc subsection is proportional to the value of

I k k+ k/2  3 k/2 + k

Xx y y

in that subsection.

After placement of kots and solution for the least-squares coefficients, the spline coefficients are
uniformly quantized on a subsection by subsection basis. A uniform quantizer ws chosen due to a lack of a
better ureerstanding of th oefficient statistics at this time. The number of coefficient quantization
levels in each subsection was proportial to the variance of the spline coefficients in that subsection,
with the maxiv=un number of levels &o-gen for the subsection with the highest pixel variance. The pror-
tionalit cnstant which determines the number of quantization levels in each subsection is chosen t acieve
the overa1 desired bit/pix l rats.

Since this is an adaptive quwitiation algorithm som overhead is necessary. the total number of bits
required for transmussion, IL, is .rlated to the total nuber of overhead bits, NO , as follows and the
number of coefficient bits N" as fLlows:

NT" R o

N can be determned by =Isideration of the fact that the overhead consists of the bits required to describe
&~ subsection quantizers, N , the maxoimum possible number of coefficients per subsection. N , and the mx-
mum possible number of bits ?er coefficient, %,. in each subsection. TMus if N. is the nu mbr of subsectiO,
the number of overhead bits is given by

qo %N + o %I-

The number of bits required to des ibe the oefficientsl. N, is simply the sum over all the subsections
of the number of bits requir to c ibe the subsection spl% eoefficients.

escription of the subsection quamntiz rs requires the maximu and m imuo reonstruction levels. fhe
are quantied to 32 bits ec to anvjre sufficient accuracy so that N - 2 x 32 - 64. N is taken arbit ly.
to be64 so that a NW image will have a Irezmu 9f 32 knots in the x y directions it N - 2S6. Since the
maximun possible number of coefficients N - (32) , 5 bits are sufficient to describe the -1zer of loot.
or equivalently, the number of coefficiens. Th maximum of quantization levels is taken to be 32 so that
N 5, 1hes values are sumurized in Table I.

Exerimental esults (east Squares Spline)

To deonstrate the utility of using splines for image coding, an experiment wa performed on the 256x256
pixel image shown in Pigure 1. The maw was partitioned into 64 subsections and ap romsted by secod order
splines. T unquanize spline apoximnation to the image is shown in Figue 2. The spline oefficients
were then quantized at a rate of approxiretely 1 bit/pixel, including the overhead, and then used to produce
the quantized image in Figure 3. he cersondrin r a rs are shown in Table 2. Note that the quantiza-
tion step at this bit rate has not Lntro±xde an excessive error increase over the wuantized spline

SPE Vol. 149 ApphCatoonS of OV1 Image PeceuSing t19l8 S3
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approxazration. At 1.01 bi%/i.1 an error less than .54 is quite reasoable =isidering the zo-aptinal us
of a uniform quentizer. A sex quantizar (6] sw~aoying the proper statistical properties would most likely
produce better results. Nevetheless, the visual qualities of the quantized reamstruction in ftqure 3 are
quite good and deaystrat that spline are a feasible approach to the utage oding prblam.

Cptical inpluimtation (DerivatIve Wpine)

7e possibility Of optically =-P insjng th SPliz oding algoriths of the previous section is based
On facts that: a least-squares kt order spline approximation to an 3zrng produces a least-squares; approxi-
mation to its derivatiies up to order k-1, in ter of lower order splines and the diviWe differences of
the spline oefficients, and that th k-i derivative of a kth ore splinae .s a first order spline. of the

NX NY
S 1FN,N (x.y) E Z cij lN,, 1(,2Z NJ,, QU') (5)

i-l i-I

if x C Ri. Cil)
where Ni~ (&7,X) -0 otherviz

N (n~) - 1 if y c [nit flj+1 )

An undarstanding of the proonsl 1ivls in obtaining a least-squares let order spine approximtion of
the k-i derivative of f(x,y), D 0 - Lf(x~y), can be gained by cosideration of figure (4). This figure
shown the amin of definition 6f a jriailar subsection of 1) k-1 D k-if (x y) * along with the knots

definm. N (x,y). Since the least-squares approxmtim 3f D W1 D k 4 (x,y) by a costat in the
defniW S.x y ~i1 *)xln ,n ) is otined by setting the cstantequal to the aierage value of D -

X ̂  x,y) in that re;gt6ngie Cj+li5 givena byX
ij

ci- T 1  1 - f f D k-lD yklf(x~y)dxdy(6
Ci nj

with tim estimate bein'g

-a _ k -i N X N Y 1 i + i ' "J + 1. k - l ( 7)(, 8 ) 0

lo &, f(x,y) (n (C - f y (7)da

f(x,y) is then obtained by a k-i fold integration of equation (7) in the x and y directions with inclsio
of the ~ppr initial oniditions. Simn initial connditions in the higher order derivatives produce staple

chn*1dages in density across the face of the iimge (a situation Whiob is unlkely w ccrur in practice)
those are assumed to be nzo. Thus only the coefficient mtrix C and tde iziag initial coditions need be
quantized and tranaite to the user. 2!. 9*gei recostructed by using an idealized coherent proceor
of fiqge (5). Raze the approxiretion to 019' kl f(x,y) ise the input. A filter whos transfer function
ores; I sto that of a k-i order integratdr inythe x and y directions is placed in the beck focal plans

of Low LI. Thus the output in P is the kth order spline approxiaation to f(x.y) mains the initial oxdi-
tions. it should be sote that Wactual inplematation would involve the ue of 'leaky" integratrs since
the transfer function of an ideal integrator is unrealiuable. However it is felt that thNs would niot ari-

4 ously ffect the pertoinmnom of the systam. The initial wadmition estimates ?(x,-l) and f(-i,y) are intzo
dumed with a bean splite so that the final reonstructed ia-age SkN XNY (x.y) appears in the output plane

*San the Appndix.
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of lans L2-

Heretofore, the analysis has bown idealized and sivaplistic inti sense that nesative value of
S (x,y) exi~st and preet problm to iwming devices t~aat are intensity sensitive. This don not

;iW an insrowitable difficulty in thes reconstruction process since two procesors can beIphaitd
nefor the positive portions of SI (x:,y) and ame for the corespottding negati.ve portions. Sinc f (x.y)

is always greater than szrc the 'N'yInitial aciditions need be inclued, only in the proesor for the
positive portion. Labeling the appropriate portions,

S11N IN y MY). 1S1 NX,N (x,y), -%,,N N (x'Y) I

yx

each can be obtained with a dual processor that incbles a substraction stop as shown schasitically in
figure (6) . The subtaction stop can be iplented eitter optically or electronically before a 5-1a
inage display stsp

The difficulties with negative values of Sl,,1(x~y) are not so murh with the reconsrution step.
since a oherent proesor can handle negative 59~I as Positive values, but with the detsa ation of

Sl (: y)itself. D;-Dklf(x~y) can be obtained optically but detecting its negative values with an
i% sensitive detshozr requires holographic reording tachniques. This represents an unnecesary

cmplioation if this can be avoided by 1u other optical or hybrid processing tachnique. one such tech
niqra woumf involve iffzeq f(x~)~wt nie eeaw~eotu m the kth order divided differwc
of the pixel Vatrx 7, Ok-LppL Hre

a- o-l- -- 1

-0-- -- 0-1 1

Vk-l(VklTis then averaged down to pracbace C by a nicopzvoossor or a hard-aired algoritha. This is
showni diagranastically in figure (7). The quantizer is shown inorporated in the averaging procesor so that
its output is the quantized version of C, C . The averaging rate is deteoninwi by the derivative enrgy
procesor. Ito rate ifonation can be obtjned either aritlsretically froe, Vk1F (7 lJIT or optically
froin f(x,y) hec the two inputs show. Il output is the dimmnion of the C zatrix or anaa~ilent
quantity. C is -sZh.i as the output of the quanti~er, whre it is then split i~t bao parts Cq and C
whlere C q +n C q are given byq

qq q 2 "i

C [sax (O,_ 1)) I I
4 q 10ij

1us C and C -are vitsicas onsisting of ownnegaitive elsiaents such that
q q

Cq -q + q

Sinice q and Cq are sufficient for the umer to generate S 1 , yxu). Sl,N.,Ny xY) anid S1  MY) (xyIt

an re asitaicd to the user. Almo tanaritted are the quantized versins of the initial 14±ti fq (Xyl)4
f q(-I Y )

DPrUaseital ftsults (Derivative Spliue)

7b decomtat. the feasihilIity of the hybrid splinsencoing systin a sinulation was prforaal and these
results wer ccepared with c!s of the least square splInis at a data rat@ of approxiastely 2 bits/pixml.

SPIE V 14 AAphcavena of DvWta hing A ss~eg 1113,1SE
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0*e optically generae spline results are sham in figures B ard 9. Figure 8 shows the unquantizmd results.
A little blocking is evident, but ot erwise he rcon tion pmosem gd detail, and is a genrly
faithful reproductica of the original. Figure 9 1 - the results when the derivative splia coefficients
are quentize at a rate of 2.04 bits/pi el inluing overhead. Hare the detail in the mocther and chid has
remained quite god with fir of th feat-u easily rnoomised. ihe beckgrowd has been deaded and the
blocing is e evident. T incemasd blocking is dm to tm suboptimal quantizatlaon of the initial
coditis, to which the overall perftocinca is quite smitive. Nrvearblless, the perforzoanc of this
initial system compares favorably with the least sqare sp ll results at 2 bits/pxml as shmn in
Table 3 and figure 10. As can be oen th error in the optical spl4ne is elevated for both the urquantimd
and quantized versions. f cam abut due to the net=* of t simlation. 7he results o rnieumng the
derivative proprties of spline apzodmtins as outlined i the appendix are true for the cottjwus
mal and not nacessarily for th discrete case used in the simiLation. 'us the actal optically wpl&-

nted syste might displa a slightly improved performance. It is also expected that the use of the proper
statistics in generating a mx quantizar would greatly improve the perfoormc.

Oxclusions

It would seem that spline functions are quite attactive for ig coding purpse from both a performance
and an implmsaation vismoint. Concerning pra nroe, an error of less than .5% at a rate of MPCO -
mataly 1 birpim.l is certaily competitiv with the orthogwal transform techniques- An optcal imp]e-
mntation has ben proped and simalated that is both feasible to implezent, and wuld provide a real time
implemntation. 1his optical implementation is a M pros sic it COabinn a cohrt optical
processor for image mnsttwtion, with a combination digital-rroerent pzocese in the uodar.

It seuld be rated that the errors we rresozding data rate ware adued with a no-optimal quantizer
and further work is necessary in this area. Further study and simulations are necessary and in progress to
acuzRM a betbn understanding of the optical implementation. It is felt that these effor s should pro-
vide fruitful results.

In this appendix, t properties of the derivatives of a k t h order spline approxiation to an image
f (x,y) are investigated. It will be shan that suc an approximation also provides a least-qumres awprox-
mstion to the derivatives of f(x,y) by taking the proper divided differeanes of the spline coeff~cients and
expanding in ters of the proper lower order splines. In other words, if

Sx,'(xY) !Z(ix) S 201n1y' (A-11

is a least sqares approxi ation to f(xy) an [-lx,yCI].

(xy)= ?(Jx) (ViSVT) M.j(n~x) (A-2)
x y Sk,. x N K1,Yxy

is least-squares approximina to D f(x,y) on [-l <x,yc1 11.

-1 0 O0
0-1 1 0 --- 0

h!

whor h is U knot mesh Vidth of the spline.
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The analysis will be perforIwd in oa dimemsion as the two dixunsional equivalent r ault is obt ni

Simtmediately usming a direct product of splines.

Te proposition is: If SkN(x) is a least-squares approxmation to f(x) on the interval [-l<x<l] given by

N
Sk. SiN1 P k(i'x) -fx

rT
T(x) S (A-3)

nk.j,N(x) - .(, x) VJ S is a least-squares k-jth order spline apo ation to D xJ o [-lx].
then W- krfx a -< l.

P=rwf:If :,N(x) is a least-square approximation to f(x) on [-l<x<l] then the vector S most. satisfy

rks- ~(A-4)

1 T
r, -l !;Ixd

!r;If (A-5)

Siiary ifS 6- ~ sza~rl _jek(x) is aleast-squares;aproximnationlto Dif(x), the VS _ (A-6

1411eDf (jac) Dxf (x)dx (A7)

t t0 hat VS r-12t

It must be shmwn that S given by (A-S) isplies (A-6). flharafo ubstibting tih right side of (A-5) into
the left side of (A-6) and writing f explicitly, om obtains

r 1 1

Irk-irk fJk 1 (~Iz)()dz
-1

1. 1

f N rk-(1 "F,_ f,x) .-'1 ,(.. ,z,

-l -1

whihis 141s

fI k-l( D oI !(-iX) kl fN k ( .Z) f (z) dj d,.

4But a least-squares estimts has the property f(z) - 4(jz) I for m a (7,S),

N. T, X) r f (,.. z)t (z) dz N T(&x).. (x)

-1
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giving a left side of (A-6) equal t

-1

This result extwids t higher crdw derivatives by ixlu.tiom , with a "h" result obtained by a

dizct pr-duct of splines in the 1-l wy.
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N, NcX, Nbits/piial

02012 64 5 5 64 256 4736 1.02

Table 1. Bit Allocation Smmary

Figure (1). c-iginal 1Ige Figure (2) U .,uantized Fgure (3) Q Sptiz
Least-Squares Splinezoa-qaesSln
ApprWo~d ticn promtn
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SPWIM SPLUZ

MSE -. 230% IUF - .381%

Table 2. M~en Squ=WRam zrs
for the tMquntized
and guantized. SP11zAS
at 1.02 bi~t/pixel
(ni1luding cyvirhem)

42~

Figure (4) Subsectimu gwt
for' Si lNN (X,Y)

Figire (5) Idealized cohrent zemisruction
of xplin wude imq.
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Figure (6) Dual PrOCMSaor of 4, (ily) and

s (xNNyN,) (both ron-nmgatie).
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Figure (8). tkquatz Figure (9). Quantized Figure (10). Quntiand
Optical1 Spline optical Spline Ldlast-Squares
pproximtion AproximatIin Spline APPI01

LEAST SQkmSPIl 0=VAr SPLnZ
t1~untitd Uqmntized

1. 89 bits/pixel 2.04 bita/pixel,

MS .230% MEE - .234% Ma .460% ME - .639%

Table 3. ~taisn of Flaults ft
Zmst Square Splin with
Thoe of the Deriative
Spline at Approxdzmtely
2 BrTS/PrM.

This research wans sposoxed by the U.S. Air ftrce Office of Scientif ic hlesarc undr Grant No.
A1FS*-76-3024.
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Optical Implementation of a Spatially Adaptive Image Data Compression System*
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Department of Systems Engineering Digital Zmage Analysis
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University of Arizona University of Arizona
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Introduction

The Increasing complexity and variety of image sensors has been the source of interest
in the development of data compression for images. Image data has become one of the most
active topics of research In digital image processing as a result [11. The continued
evolution of digital circuitry has caused the focus of data compression research to lie In
digital Implementations. However, there is also a potential for optical computations In
image data compression, as was demonstrated In the concepts of interpolated DPCN (2]. The
method of OPCM data compression is one of the most thoroughly studied techniques. OPCM
achieves data com)•ression by seaprating the image information Into two parts: the low-
spatiaT frequencies and the high-spatial frequenctesL-w-spifal frequencies ae re-
tained by exploiting their predictability; high-spatial frequencies are retained at fewer
significant bits, and substantial data compression is achieved. Interpolated 0PCM is a
mechanism for separating an image into low- and high- spatial frequency components, with a
similar amount of data compression being achieved. The computations to achieve the sap-
aration can be implemented by simple Incoherent optical devices (2).

The greatest amount of data compression can be achieved only by adaptive processing,
i.e., processing that changes as local image characteristics change LI). Thus, the most
efficient DPCM compression schemes are adaptive. The adaptive approach is not easily in-
cluded in the optical processes examined for interpolated OPCM, however, since adaptation
would require optical responses that vary within the Image plane. To achieve adaptive data
compression with optical components requires extremely sophisticated methods of adaptive
optical spline interpolation (31. The advantages of adaptive computation are thus offset
by the extremecomplexit yrequired*.to implement them..

In the following we describe a system which has the capability of being partially adap-
tive, but which is much less complex in system architecture and implementation. It can be
considered as feasible for optical implementation with much less system complexity than the
optical spline interpolation systems previously examined [31.

An Edge-Detecting Compression Technique

It has been known for some time that Image data compression systems can be successfully
developed around the separation of the original image into low- and high-frequency compo-
nents. A fundamental consideration in such a system, therefore, is to answer the question:
by what criterion do we define the separation between low- and high-spatial frequencies?
The new data compression technique we describe below answers this question In terms of a
criterion that we believe is relevant to the final quality of an image, that is a criterion
concerning visible or ereigel aspects of high-frequency information. We believe that the

4 high-frequency n ormaiTon i n image is principally associated with the edges of objects
in the original scene. Therefore, if we can successfully represent the edges of objects,
we have the prospect of data compression that is acceptable in visual utility to the human
being that constitutes the final end-user of the compressed data.

A schematic diagram of the proposed data compression system is seen in Figure 1. There
are three separate parallel paths; structures to the left of the dotted line makeup the

* compression operations, and structures to the right of the line are the reconstruction oper-
ations. The topmost of the parallel paths Is responsible for deriving the low-spatial fre-
quency information of the image which is to be compressed. This is done in a manner Iden-
tical to that developed for the interpolated PPCM technique previously discussed 121. A set
of subsamples are extracted from the original 1imag. For example, if the original image
possessed an Intrinsic resolution equivalent to 512 x 512 pixels, the subsampled image
might be 128 x 128, and would be created by extracting every 4th pixel of every 4th line.
The subsamples are then quantized at a fixed number of bits and transmitted. At the re-
ceiver the subsamples are used to create a low-frequency version of the original image.
The subsamples are Inserted into a matrix whose size is equal to the resolution in pixels

"4 of the original image, and zeroes are inserted in place of the pixels which were discarded
in the subsampling process; e.g., for the case above every 4th pixel and line of the 128 x

*Work performed under sponsorship of the U. S. Air Force Office of Scientific Research,
Grant No. AFOSR-76-3024.
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128 subsamples would be inserted in a matrix of zeroes. This matrix of subsamples is then
Interpolated to replace the zeroes by interpolated subsample values.

I ' .i, ... I Rvionstruc~

Or na Subsp . -uctedimage ntiusnp, zt; Impaget

Quntize

ISwitch Controli
0I

Figure 1: Compression System Schematic

As discussed In the paper describing interpolated OPCN, both the subsampling and inter-
polation operations can be carried-out by simple Incoherent optical processes.. For example,
subsampling can be Implemented with a simple focal-plane scanning mochansm4 e.g., pick-off
mirrors and apertures, and interpolation can be Implemented via an out-of-focus apodized
lens imaging a matrix of displayed subsamples.

The bottom two parallel paths in Figure 1 are the portions of the data compression system
which represent the high-spatial frequency information in the original image. The bottom-
most path consists of the mechanisms to detect edges. The rationale for the level slicing
and edge detection is seen In Figure 2. A coarse slicing of levels causes a steep gradient
to undergo a change in a number of levels in a short distance of space. An edge detector
which can detect the existence of major level changes in a small spatial region has Iden-
tified image areas which must be accurately represented to retain the sensitivity to edges
of the human visual system. It is in this sense that the system of Figure I may be con-
sidered adaptive. i.e., it concentrates the high-frequency coding in regions of edges, edges
being the most severe problems for high-frequency representation.

I\

.4

Region of edge

Figure 2: Adaptive Effects of Level Slice

The Information concerning edge locations is used to "control" the switch in the middle
path of Figure 1. The switch is not literal but symbolic of the following selection proc-
ess. In regions where the low-frequency image dominates (that Is, regions which are devoid
of edges), it is assumed that the low-frequency representation created by the uppermost

4 path is an adequate quality image. However, in regions where the ed as are important (that
is, regions where edges are detected) the actual value of image pxes are selected from
the image region and transmitted. These literal edge pixel values are used to replace the

I., V * -
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low-frequency representation of the edge pixels that would be constructed by the low-
frequency interpolator. The system has the overall behavior of trying to represent the
image by low-frequencies, but with adaptive mechanisms to select and retain the most im-
portant high-frequency content for the edge structures.

The implementation of the bottommost pa-th in Figure 2 can also be achieved by optical
processing, or in combination with discrete focal plane sensors. For example, the level
slicing operation has been demonstrated by the nonlinear halftone work of Sawchuk [4). The
edge detection operation can be broken In two steps: edge calculations and edge thresholds.
The edge calcuTation is, in essence, the convolution of the level-sliced image with a par-
ticular point-spread-function, and a convolution can be implemented optically [51. The
edge threshold is a trivial case of level-slicing and can be implemented, again, by the
Sawchuk method. Alternatively, the threshold can be calculated digitally. In this case,
the image output from the level slice would be sampled wtth a discrete sensor array, eg.,
an array of silicon photo-diodes or imaging CCD elements. A simple digital processor would
access the sensor array elements, perform analog-to-digital conversions and digitally im-
plement the threshold operations.

The optical Implementation of the level-slice and edge calculation would require a step
in converting the incoming image from non-coherent to coherent illumination, since the pro-
posed optical processors require coherent sources. There are a number of ways of achieving
this conversion, however, and we will not dwell upon the specifics.

The major computatiors for data compression in Figure I can be implemented optically.
The actual transmission of compressed image values would most likely be in digital format,
given the increasing preference for digital data transmission techniques. Thus, following
the computations for data compression the compressed data must be coded for transmission,
and digital hardware wIT1 be employed. The final system is, thus, most appropriately a hy-
brid optical/digital system. In the following section we Indicate some of the digital
coding considerations.

Simulation of the Adaptive System

To assess the efficiacy of an edge-detecting optical compression system, a simulation of
the architecture in Figure I was carried out with digital imaqe processing techniques, that
is, optical convolutions for interpolation were implemented by digital convolutions, optical
level-slicing was Implemented with a digital requantization, etc.

In the simulation of the edge-detection compression on an image, the following parameters
are important:

(1) Subsampling Increment, the spacing between pixels retained for reconstruction
of a low-frequency image;

(2) Number of slice levels, the number Of uniform steps into which the pixel radi-
ance values are divided;

(3) Edge threshold measure, the number of steps in level which are chosen to rep-

resent an edge;

(4) Subsampling quantization, the number of bits to quantize a sub-sample for
transmission;

(5) Edge quantization, the number of bits to quantize a pixel chosen as an edge
for transmission;

(6) Edge coding, the method chosen to represent the location of detected edges.

Ideally, the optimum values for these parameters would be chosen on the basis of a com-
prehensive theory of the system. No such theory has been developed, however, and we have
initially chosen values for the parameters from experimentation with the method.

Figure 3 shows an original digital image, sampled at 256 x 256 pixels, with each pixel

quantized at 8 bits. For the simulation of the compression system, the following param-

eters were chosen:

(1) Thesubsampling increment was every 4th line and every 4th pixel. The image
interpolated at the receiver from this 4 x 4 subsampling is shown in Figure 4.
The loss of resolution and the inability to identify objects in this image is
pronounced. The sub-sampling quantization was 4 bits, i.e., the interpolation

I. t. "- ,m,._ j_ ,1 _
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shown in Figure 4 was created from 4-bit requantization of the subsamples

selected from Figure 3.

Figure 3: Original Image (256 x 256) Figure 4: Rainterpolation from 4 x 4
Subsampling of Figure 3.

(2) For level-slicing. 16 slices were chosen, the I6.levels being uniformly
distributed between thle minimum and maximum pixel grey vale (0 and 215).

(3) An edge was assumed to be 5 or more steps in the slices produced by the
level slicing. Figur* S shows the map of edges produced by using an edge-
detector with this S-step threshold criterion.

(4) Each pixel selected as in edge was quantized at 4 bits. The result of
Inserting these 4-bit edge pixels into Figure 4, at the edge locationsi
defined by Figure 5, is shown in Figure 6, the reconstructed Image.

* 4Figure 5: Edge Map for Figure 3 Figure 6: Reconstruction: Bit Rate
1.385 bits/pixel

Two processes critical to the system operation ere the edge detector and the coding of
edge locations. A number of edge detectors have been experimentally evaluated, including
some of the most commonly found in current literature, e.g., Laplacian operator, Sobel
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operator, [6] etc. Experience with these different edge operators, and others devised for
the simulation, has shown that there is little overall difference In compression performance
among a variety of choices for the edge operator. Consequently, the operator which is most
direct or simple to implement is the rationale for choosing between the different edge op-
erators. The coding of edge locations does noz offer as many options, however. It is
necessary to represent the location of an edge in as few bits as possible, in order that the
bits saved by the edge-detecting process not be lost in transmitting edge locations. This
also requires a compromise in ease of implementation. A simple, and yet relatively effi-
cient technique is run-length coding [6,7],coding the length of a run, where a run is de-
fined to be the number of adjacent pixels which are alike, that is, either edge or non-edge
pixels. Since edges are less frequent in occurence than non-edges, a shorter code word is
required for edges than non-edges. In Figure 6 a run-length code of 2-bits for edges and
5-bits for non-edges was chosen.

The compression efficiency achieved in the creation of Figure 6 is sumarized as follows.
With the 4 x 4 subsampling at 4 bits per sample, a total of .25 bits per pixel are required.
The run-length code for edge locations in Figure 6 amounted to S211 edge runs and 5371 non-
edge runs, and the total code bits in the run-length code is equal to 0.5688 bits per pixel.
Finally, there are 9276 detected edge values in Figure 6, and quantizing these edge values
at 4 bits each leads to a total of 0.5661 bits per pixel. The total bit requirements to
represent Figure 6 is. thus, 1.385 bits per pixel. Note that in each of the above items,
"bits per pixel* refers to bits per pixel of the or inal image (not per subsampled or edge
pixel). Thus, Figure 6 represents a bit re on rom 8.0 bits per pixel to 1.385 bits
per pixel.

Figure 7 and Figure 8-represent another pair of images, sampled at 52 x 512 pixels and
processed with parameter choices identical to Figure 3. The resulting bit rate In Figure 8
is 0.922 bits per pixel, as compared to 8 bits per pixel in the original of Figure 7.

*- L..

Figure 7: Original Image (512 x 512) Figure 8: Reconstruction: Sit Rate-
0.922 bits/pixel

The visual properties of both Figures 6 and 8 is similar, in that low-contrast non-
structured details present in the original Image are replaced, through the subsampling/
interpolation process, by blurred shapes. The edges that define and outline objects are
retained, however, and all major objects visible In the original are visible in the com-
pressed and reconstructed image. There are some visible artifacts at the edges of the re-
constructed images.

Summary

We have described an image data compression system which uses edge-detecting mechanisms
to adaptively code Image features to which the eye is most sensitive. There are some ob-
vious directions in which future research in this method should be pointed. For example,
the use of a physiological model of edge-detection would assure that edge detection is
sensitive to properties to which the human eye is also sensitive. A general model of com-
pression performance, as a function of the system parameters discussed above, is also

K..
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needed, in order to optimize the overallhSystom performance for minimum bit-rate and maxi-
mum image quality. A general goal for thistypo of system is to achieve an average bit-
rate of 1.0 bits per pixel with image quality virtually identical to the original image.
Whereas this goal was not achievable with the simpler method of interpolated OPCN, we be-
leve the method discussed herein may offer the potential to achieve this goal In optical
componentry for image data compression.
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Abstract

Image data compression methods have been dominated by digital computations. In this pa-
per we discuss a data compression concept which employs optical computations as part of the
compression process. Simple optical processes are used to separate an image into low
frequency and high frequency components. These components are then subjected to temporal
compression, for multiframe imagery, by using a DPCM frame-buffer structure. Simulations
of the process are shown, with reasonable performance being seen at multiple frame com-
pression rates of 1.75 bits per pixel.

Introduction

Image data compression is a very active topic of research in image processing. This is
not surprising when one considers the extensive s'ources of imagery currently being used for
a variety of purposes, e.g., LANDSAT imagery, medical imaging, non-destructive testing, etc.
Many such imagery situations require either the point-to-point transmission of imagery and/
or the archival storage of imagery. Given the economic costs associated with transmission
or archival storage of masses of image data, the desirability of image data compression to
reduce these costs is obvious.

Image data compression schemes have been dominated by digital processes. That is, the
required computations for an image data compression scheme have been implemented by digital
processes. This is not surprising, given the emphasis on compression schemes which require
the inherent flexibility of a digital scheibe, e.g., adaptive cosine transform compression.
However, an investigation of different architectures for image data compression can reveal
feasible data compression methods for which optical computations can replace digital compu-
tations. The successful discovery of such architectures is interesting because they would
represent an extension of the repertoire of optical processing functions into new situations
where optical and digital processes would be directly competitive.

One such success in the search for image data compression architectures with optical im-
plementation is the IDPCM method (l]. This is a data compression scheme which functions
analogously to conventional digital DPCM compression 2], except that the specific compres-
sion steps are implemented by optical processes.

Interframe data compression methods are applicable only to imagery sources which are
temporal in variation, e.g., the successive frames of a commercial broadcast television sig-
nal. Obviously, if the extent of cnanges in successive frames of a multiframe sequence is
small, then there will be great temporal redundancy of the spatial information recorded in
the image frames. This is the purpose of an interframe compression system: to remove the
temporal redundancy of the imagery's spatial data.

In the following article we examine a data compression system which combines optical

spatial processing with temporal processing for interframe data compression.

Interframe Architecture

The basic structure which we propose for the hybrid dig4tal/optical interframe compres-
sion system is shown in Figure 1. The upper portion of the figure represents the portion
of the system responsible for data compression, whereas the lower portion is the reconstruc-
tion system. The portions of the system using digital and optical componentry are clearly
segregated, as well. We will discuss the overall operation of the schematic and then des-
cribe the actual componentry implementation of the various blocks in the diagram.

To the left of the nodes marked () in Figure I is the portion of the system where spa-
tial data redundancy is eliminated. The image is subsampled, and the subsamples are used
to reconstruct a low-frequency version of the original image using bilinear interpolation

* 4 of the subsamples. The low-frequency version of the image is then subtracted from the
original image. This is, of course, equivalent to a hign-pass filtering of the original
image.
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To the right of the nodes marked 9 in Figure I is the portion of the system where
temporal data reoundancy is eliminated. The quantizer and feedback structure are identi-
fiable as similar to a conventional DPCTM image data compression system (3). However, tnere
is one great difference between the structure in Figure I and conventional DPCM1 data com-
pression: parallel vs. serial data flow. in a conventional DPCM system a set of successive
sequential samples are extracted from the image and saved in the data buffer for prediction
and differencing with succeeding image samples. However, in Figure 1 it is successive
frames of imagery which are buffered, used for prediction, and differenced. Thus, the ar-
chitecture of Figure 1 signifies paalel flow of image pixels argund the quanitzation/feed-
back loop, as well as parallel di fferencing at the nodes marked 1 . Rather than specific
samples from an image, the DPCII loop in Figure 1 represents parallel image-plane to image-
plane operations. It is equivalent to a bank of N x N serial DPCM processors operating in
parallel (where N x N is the pixel resolution of the image plane).

Likewise, the nodes marked ( in Figure I represent similar parallel operations in the
reconstruction process. That is, a frame buffer saves each successive frame and sums it,
in parallel with the succeeding frame. Thus, the operation is identical to a bank of N x N
serial DPCN reconstructors overating in parallel. Both low-frequency subsamples and the
high-frequency differences are reconstructed in this fashion.

The final reconstruction step is to generate a low-frequency image version from the sub-
samples, again using a bilinear interpolation. Finally, the high-frequencies are reinserted
into the low-frequency image through the final summation step.

Optical Spatial Compression Subsystems -*. Digital Temporal Compression Subsystems

C
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Figure 1: Hybrid (Optical/Digital) Interframe
Compression Schematic
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Componentry Considerations

The implementation of Figure 1 can be segregated into optical and digital components,
with clearly defined interfaces between each. For example, in Figure 1 the nodes marked
(D represent where optical information enters a region of the system that is dominated Oy
dicital jrocessing. Likewise, in the reconstructor, everything to the rigbt of the point
marked (Y is optical processing, with digital processing to the left of (V .

We now summarize the actual component prospects at each of the individual blocks in the
diagram.

(1) Subsample. A number of mechanisms can optically subsample an image plane.
For example, if a linear sensor array is used, with the array optically
"push-broomed" across the image plane, then proper timing of the array read-
out can subsample the image plane, e.g., extract every nth pixel from every
nth line.

(Z) Bilinear interpolation. An optical bilinear interpolation can be constructed
by writing the proper apodization function across a lens, and then throwing
the lens out of focus (4]. For Figure 1, the subsamples extracted would be
imaged on a matrix display, such as a CRT, and the optical interpolation ex-
ecuted from mis-focus on the display.

(3) Imagp difference. The difference between the original image and the low-
frequency version is a pixel-by-pixel difference between the two image
planes. Electro-optical.mechanisms for this differencing operation have been
demonstrated recently, including electro-optical effects in a liquid crystal
E5), and the use of channel-plate image intensifiers (6].

(4) DPCM processors. Although the conceptual processes in these components are
parallel image-plane to image-plane operations, it is direct to see how they
could be implemented serially. For example, subsamples extracted from an
array would go directly into the DPCM loop, the loop being a "pass-through"
around the quantizer to the frame buffer until the frame buffer is loaded
with its reference image. Then the frame buffer data would be extracted,
passed into a working quantization loop, etc. The data could be processed
serially through a single DPCM processor, the data being serially extracted
from the frame buffer and synchronized pixel-for-pixel with the image plane
subsamples. Thus, although processed serially through a single OPCM proc-
essor, the pixel-by-pixel synchronization between subsamples and frame buffer
would have the same effect as N x N parallel DPCM processors operating at a
very low data rate. Note that sensing for subsamples with a suitable detector
(such as a linear array) could provide data in exactly a suitable format for
input to the DPCM processes. Obviously, all operations in the OPCM processors
would be digital. Similar comments can be directly applied to the DPCM loop
which temporally processes the high-frequencies.

(5) Reconstruction. At the nodes marked (D the incoming data circulates through
frame buffers and is summed, with incoming image plane pixels synchronized to
the corresponding frame buffer pixels, to regenerate both low and high fre-
quencies.

(6) Reconstruction bilinear interoolator. The processing here is the same as in
the compression step. The reconstructed samples would be written on a matrix
display which would be imaged out of focus.

(7) Summation. Again, a suitable electro-optical effect would be used to achieve
summation, as in the corresponding difference operation in the compression
portion of the system. This would require conversion of the samples from the
high-frequency DPCM reconstructor into light intensitites for the electro-
optical summation.

As can be discerned from this discussion, the overall architure mixes optical and digital

processes in a hybrid system for interframe compression.

Simulation Results

To demonstrate the architecture's feasibility, a series of digital simulation experiments
was carried out. That is, the ootical interpolations were replaced by digital interpola-
tions, the optical diffe-ences by digital differences. etc. The resulting digital simula-

4 tion was carried out in the Digital Image Analysis Laboratory of the University of Arizona,
Department of Systems Engineering.
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The source cata "or the simulation consisted of a sequence of 14 digitized frares from a

television broadcast of Walter Cronkite. The frames were dicitized at 256 x 256 pixels res-
olution, with 8 bits of intensity per pixel.

The 14th frame NISE/BR performances for Walter Cronkite Images are summarized in Table 1.
and the NIISE performances across each frame for various bit rates are given by Graph 1.1 to
1.4, where tne normalized MSE(N.ISE) as an objective image quality measure and the overall
image quality measure and overall bit rate (BR) as system performace measure are defined as
follows:

( fr(xy) - f(x.y) 2

I f(x,y) 2

x,y

(2) BR 1 2og2 (LFQ) + 3 (HFQ)
LFQ: low frequency quantization level

HFQ: high frequency quantization level

According to Table 1, the NMSE performances are almost oarallel to the LFQ levels. In
other words, for each LFQ level, NMSE performances are almost the same within the range of
1% or less. Also, the HFQ levels have little effect on the NMSE performances of the 14th
frame at the same LFQ level. On the contrary, for the same HFQ level, the NMSE performances
improve considerably along with the increasing LFQ levels. From the transitions of Nt1SE per-
performances across each frame for various combinations of HFQ and LFQ as shown in Graph 1.1
- 1.4, it can be said that it is essential to allow the larqe LFO. levels (8 or.16) for -the
acceptable objective image quality, regardless of the HFQ levels. The subjective image
qualities associated with 1.5 bits/pixel (HFQ = 2, LFQ - 8) and 1.75 bits/pixel (HFQ - 2,
LFQ - 16) are quite good as shown in Figures 2 and 3. Figures 4 and 5 show the 14th frame

reconstructions for the cases of BR • 1.25 bits/pixel (HFQ - 2, LFQ - 4) and BR = 1.0 bits/
pixel (HFQ - 2. LFQ - 2), in which some artifacts due to the motion displacements are ob-
served around his shoulder and his head, and at the center of his face and his chin.

In addition, the transitions of NMSE performances for BR - 1.0 bit/pixel in Graph 1.1
shows very good NMSE performances about I - 2% up to the 8th frame. Due to the large motion
involved between the 8th and gth frames, the subsequent NMSE performances are deteriorated
rapidly. Thus, if we allow the larger LFQ levels such as 8 or 16 at the 9th frame, the
errors due to the motion displacement can be made less than the case of LFQ - 2. In other
words, a temporally adaptive quantization scheme can improve the NMSE performances further
more at the relatively small cost of the BR performances.

Conclusions and Further Research

The conclusions and further research areas can be summarized as follows:

Conclusions

(1) The reasonable subjective-and objective image qualities (NMSE - 0.9% - 1.3% for
the 14th frame of Walter Cronkite images are obtained at the BR - 1.75 bits/
pixel or 1.5 bits/pixel through the digital simulations of the proposed hybrid
interframe data compression scheme.

'2) The multi-frame subjective and objective image qualities are mainly determined
by the magnitude of the motion displacement between frames. In the proposed
hybrid interframe system, it is essential to allow the large LFQ levels (8 or
16) for the acceptable image quality, regardless of the HFQ levels, because the
large motion is constituted in the low frequency component. It seems that the
contribution of the high frequency component to the reconstructed frame is
jeopardized by the motion displacement between frames.

Future research

(1) DevInpment of a Motion displacement measure and motion detector.

(9 (2) Temporally adaptive scheme based on the motion displacement measure.

(3) Oetailed system comoonentry consideration: Electrical-Optical devices.
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Table 1. 14th Frame NMSE/SR Performances
Summary for Walter Cronkite Images

h Q16 8 4 2

BR*4.0 bits/pixel BR-3.25 bits/pixel BR-2.5 bits/pixel BR-l.75 bits/pixel
16 NMSE-0.89% NMSE-0.83. rMSE-0.96% NMSE-O.92%

8 BR*3.75 bits/pixel BR-3.0 bits/pixel BR-2.25 bits/pixel BR-l.5 bits/pixel
NMSEal.22%. NMSE-1.17% NMSE-1.24. NfISE-l.3%

4 R*3.5 bits/pixel BR-2.75 bits/pixel BR-2.0 bits/pixel BPl25 bits/pixel
NMSE-2.77% NMSE-2.89% NPISE-2.6% NMSE-3.O1%

2 BR*3.25 bits/pixel BR-2.50 bits/pixel BRl1.75 bits/pixel BR-1 bit/pixel
NMSE-9.63% NMSE-10.07% NMSE-9.15% jNMSE-9.53%

Simulation Results for Hybrid (Optical/Digital
Interframe Data Compression Scheme

NMS £
1.0 bit/pixel, (HFQ-2. LFQ=2)
1.25 bits/pixel, (HFQ-2. LFQ=4)

~-: 1.5 bits/pixel, (HFQ-2, LFQ-8)

10% - 1.75 bits/pixel, (HFQ-2, LFQ-16 LF

5%

4 .. LFQ - 8

2 3 5 7 8 9 1 11 2 1 14# of frame

Graph 1.1 Comparison of NMSE Performances for HFQ - 2
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Simulation Results for Hybrid (Optical/Digital)
Interframe Data Compression Scheme

NMSE
'..75 bits/pixel, (HFQ-4, LFQ=2) -

2.0 bits/pixel, (HFQ-4, LFQ-4)
101.__ 2.25 bits/pixel, (HFQ-4, LFQ-8)

/LFQ *2

2 3 4 5 6 7 8 9 10 11 12 13 14 # of frame

Graph 1.2 Comparison of NMSE Performances for HFQ - 4

*Figure 2. HFQ,2, LFQ.16 Figure 3. HFQ*2, LFQ-8
BR-1.75 bits/pixel BR-1.5 bits/pixel
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Simulation Results for Hybrid (Optical/Digital)
Interframe Data Compression Scheme

NMSE
2.5 bits/pixel, (HFQ-8. LFQ-2)

: 2.75 bits/pixel, (HFQ-8, LFQ-4) -- LFQ - 2
10. : 3.0 bits/pixel, (HFQ-8, LFQ8)

3.25 bits/pixel, (HFQ-8, LFQ-16)

5%1

/

/LFQ - 4

~7- - - ---LFQ -8
. . ........ LFQ - 16

2 3 4 5 6 7 8 9 10 11 12 13 14 Eof frame

Graph 1.3 Comparison of NMSE Performances for HFQ = 8

Figure 4. HFQ-2, LFQ-4 Figure 5. HFQ*2, LFQ-2
BR-1.25 bits/pixel BR-l.O bits/pixel
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Simulation Results for Hybrid (Optical/Digital)
Interframe Data Compression Scheme

N MS E
3.25 bits/pixel, (HFQ=16, LFQ,2)
3.5 bits/pixel, (HFQ=16, LFQ.4)
3.75 bits/pixel, (HFQ=16, LFQ-8)

101. 4.0 bits/pixel, (HFQ-16, LFQ-l6) /~%.LFQ 2

.LFQ =4

2 3 4 5 6 7 8 9 10 11 12 13 14 # of frame

Graph 1.4 Comparison of NMSE Performances for HFQ - 16
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